
The X² MSCI
Programmer's

Handbook

by

Kurt Fitzner

Revision 1.0

Copyright ©2004, Kurt Fitzner

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/2.0/ca/ or send a letter to:

Creative Commons
559 Nathan Abbott Way
Stanford, California 94305
USA.

http://creativecommons.org/licenses/by-nc-nd/2.0/ca/

The X² MSCI Programmer's Handbook

Table of Contents
1.About This Manual ..5

1.1 Acknowledgements ..5

1.2 Example Code...5
1.3 Terminology ..5
1.4 Parameters and Syntax..6
1.5 Companion Files...6

2.Introduction ..7
2.1 Overview...7

2.2 Enable Scripting...7
2.3 Scripting Menu...7

Script Editor..7
Reinit Script Caches...8
Script Debugging ..8
Clear Debug Messages...8
Script Debugger Menu...8
Global Script Tasks..8

3.Viewing and Editing Scripts ..10
3.1 Viewing Scripts..10

Viewing Scripts You Write...10
Viewing the Included Scripts..10

3.2 Script Structure ...10
Name..11
Version...11
Description..11
Arguments ...12
Source Text...12

3.3 Script Line Structure ..12
3.4 First Script...13

4.Scripting Fundamentals ..17
4.1 Variables ..17
4.2 Arrays..19
4.3 Conditional Instructions ..20

IF Blocks..20
Skip IF..20
Building a Conditional Instruction ...21
Null – the Special Condition ...21

4.4 Loops...21
4.5 Flow Control...22

Continue & Break...22
Goto..23

4.6 Look to Examples ..23
5.Script Interface ...25

5.1 Debugging Scripts..25
Built- In Debugger ...25

Logging ..26
5.2 Scripts as Commands ...26

Command Scripts...26
XML Language File...27
Setup Script...29

pg. 3

The X² MSCI Programmer's Handbook

6.Reference ..31
6.1 General (Flow Control) ...31

6.2 General (Script Calls)..31
6.3 General (Arrays) ...32
6.4 General ..33
6.5 Audio Commands ..42
6.6 Logbook Commands ...43
6.7 Fly Commands ...44

6.8 Trade Commands (for Ships)...56
6.9 Trade Commands (for Stations)...59
6.10 Trade Commands (for Ships and Stations)...60
6.11 Trade Commands ...61
6.12 General Object Commands ...63
6.13 Universe and Sector Commands ..76

7.Advanced Topics...78
7.1 Processes and Tasks...78
7.2 Concurrency, Interrupts, and Atomic Operations..79

Concurrency ..79
Interrupts ..80
Signals..81
Atomic Operations ...82

7.3 Artificial Life (AL) Engine Plugins...84
Registration Script..84
Event Handler Script..84
Timer Handler Script...86

7.4 Automatic Command Restarting ..87
Detecting Script Changes ..87
Performing the Restart...88

Annex A. Data Charts ..90
A.1 Plot states..90
A.2 Audio Samples Catalogue ..91
A.3 Speech Samples Catalogue ..96

Page 7 – Sector names...96
Pages 9 & 12 – Latin and Greek Letters...97
Page 13 – Miscellaneous Phrases...98
Page 17 – Object, Ship, and Factory Names and Descriptions..103
Stations..103
Wares & Upgrades ...104
Ships...105

A.4 Default Start Actions..106
A.5 Object Hierarchy ...107
A.6 Search Flags...108
A.7 Asteroid Types..109
A.8 Nebula Types...110

A.9 Sun Subtypes...111
A.10 Planet Subtypes...113
A.11 "Special" Object types..115

Special Object Descriptions ..115
Special Object Images...117

Index...121

pg. 4

The X² MSCI Programmer's Handbook

1.1.1.1. About This ManualAbout This ManualAbout This ManualAbout This Manual

1.1 1.1 1.1 1.1 AcknowledgementsAcknowledgementsAcknowledgementsAcknowledgements

The author wishes to thank the following people who have contributed to the making of this
manual:

• My wife, Linda, for being a computer widow for a month over this book 1, for

suggestions, encouragement, support, and proof- reading.

• ticaki, for many helpful suggestions.

• esd, for kindly allowing me to base the Audio Samples Catalogue in Annex A.2 on his

excellent wave table guide. It was heavily edited, but his work gave a great head start.

• BurnIt!, for pointing out the source of the data used to create the table in Annex A.1.

• IvanT for a kick in the pants to get back into the X community, and for the help in

becoming a beta tester. The only thing else I could ask for more is an introduction to
that girl in his avatar.

• The entire Egosoft team for making an incredible game. A game with a scripting
component such as this one has is unprecedented.

• The X community at large, for encouragement, advice, and for being the best gaming

community in the world. Here's to you.

1.2 1.2 1.2 1.2 Example CodeExample CodeExample CodeExample Code

Any time example code is given, it will be shown in a Courier type face, with colouring similar
to what is displayed in X²'s script editor. For example:

TestLockupFix:

001 while [TRUE]
002 @ wait 10 ms
003 end

1.3 1.3 1.3 1.3 TerminologyTerminologyTerminologyTerminology

The word “command” can have many connotations in X² – especially in scripting. In this
manual, command will be used to indicate a script or game function that a player causes to run

through a menu. Such as to “command” a ship to jump to the next sector. The actual script file
that is attached to a command will be referred to as a “command script”.

The word “instruction” will be used to indicate a scripting statement in a script. For example,
two important scripting instructions are the wait, and call script instructions.

The word “statement” will also sometimes be used. This will generally indicate a scripting
instruction as it appears in an actual script. For example: the statement at line 2 in the above
script is very important to keep the script from causing the game to freeze.

The word “script” can also have different connotations. Some use it to refer to a single script
file. Some use it to refer to all the scripts that make up a given command – that is, the actual
command script itself plus all the support scripts. This manual will use the word “script” to
mean a single script file. When referring to a combination of scripts that are bundled together

to perform a common task, the word “plugin” will be used.

1 To be honest, this should read “for being more of a computer widow for a month over this book”

pg. 5

http://www.egosoft.com/x2/forum/profile.php?mode=viewprofile&u=ticaki
http://www.egosoft.com/x2/forum/profile.php?mode=viewprofile&u=41564
http://homepages.tesco.net/esd00/x/esd-01-S-wavtable.txt
http://www.egosoft.com/x2/forum/profile.php?mode=viewprofile&u=15139
http://www.egosoft.com/x2/forum/profile.php?mode=viewprofile&u=IvanT

The X² MSCI Programmer's Handbook

1.4 1.4 1.4 1.4 Parameters and Parameters and Parameters and Parameters and SyntaxSyntaxSyntaxSyntax

Text in square brackets indicate syntax or a parameter that is optional (a bold typeface is used
to denote when a square brackets actually occur in an instruction). For example:

[skip] if [not]|while [not]|<retvar> = <arrayvar>[<element>]

In the above syntax description of one of the array instructions, [skip] indicates that 'skip' is

optional syntax. The bold-face brackets around <element> indicate that those square brackets
are actual characters that occur in the instruction.

Angle brackets brackets indicate descriptive words describing a parameter. The text between

the brackets is a description of what to put, not verbatim text that you would enter. It indicates
text that you would replace with something of your own creation. In the above example,
<arrayvar> indicates a parameter where you would specify an array variable.

The vertical bar character, “|”, is used to indicate a list of syntax possibilities that you would

choose from. Continuing from the above example, the section “[skip] if [not]|while [not]|
<retvar>” indicates that you would choose [skip] if [not], or while [not], or <retvar>. Think of
it as an “or” character in a syntax description.

1.5 1.5 1.5 1.5 Companion FilesCompanion FilesCompanion FilesCompanion Files

There should be a set of companion files available from the same location you obtained this
book. These companion files contain a set of high- resolution images to go along with the
thumbnail pictures in Annex A.7 through A.11.

pg. 6

The X² MSCI Programmer's Handbook

2.2.2.2. IntroductionIntroductionIntroductionIntroduction

2.1 2.1 2.1 2.1 OverviewOverviewOverviewOverview

MSCI – Manual Ship Computer Interface. That little four- letter acronym changed the X
gaming experience forever. X² is perhaps the most extensible space simulation ever written.
Available to every player is a method of writing programs that can affect almost every aspect of

the game. These programs, called scripts, can perform trading runs, fire your turrets, transfer
money to or from your stations, protect your transports... the sky isn't even your limit. Much of
the behaviour of ships in the game is governed by scripts that were written by the developers.
When you order a transport to “Buy ware at best price”, it's a script that is controlling it. In fact,
all the commands that are in the Flight, Trade, Combat, etc menus run scripts.

The best thing about scripts is that they can be created, edited, and debugged right from within
the game. The game itself is a whole development environment for creating more of the game.

2.2 2.2 2.2 2.2 Enable ScriptingEnable ScriptingEnable ScriptingEnable Scripting

To enable scripting, exit out of any menu and type “Thereshallbewings”. Type it fairly slowly
and make sure the 'T' is capitalized. After this is done you should here a beep.

It should be noted that once scripting is enabled, the current game you are playing is tagged as
a modified game. A small label will appear in the top left corner of the game screen marking it
as modified. Because a script can do almost anything, a player with scripting enabled could
simply script up a billion credits at the very beginning of the game. This label is intended to
mark screen shots taken on the game so that it is clear to other players that the player is
working on a non-standard game.

If you intend to do a lot of scripting, it might be wise to create a new game especially for
development and not use your main game saves.. This is a good idea not only because of the
modified tag, but also because it is quite possible to damage a game in ways that aren't readily
apparent. Don't mix script development and game playing.

2.3 2.3 2.3 2.3 Scripting MenuScripting MenuScripting MenuScripting Menu

To bring up the scripting menu once scripting has been enabled, just press Bc to call up
your ship's command menu, then hit s. The first time this is done you will see a small help
file with information on the script editor. Once you hit E to leave that screen, you will see
six items in the scripting menu that will appear:

Script Editor

This menu entry takes you to the actual script editor itself. The very top entry allows you to

create a new script. All the currently editable scripts are listed and can be opened. Just use the
arrow keys to highlight the script you want and hit E. To copy an existing script, highlight

it and press c, and to delete a script, highlight it and press =.

When inside a script, editing it, you can use the Z and Y arrow keys to move to different lines
of code (the O and N keys can also be used to quickly move up and down through a
script), the Q and R arrow keys move left and right within a line of code, and the  and =
keys to insert or delete lines.

pg. 7

The X² MSCI Programmer's Handbook

Reinit Script Caches

When a game loads or starts, every script that is attached to a command menu item is stored in
a script cache. This allows for faster command execution. However, it also means that a

command will continue to use an “old” version of a script even after the script has been
changed. The “Reinit Script Caches” menu entry allows you to force X² to reload all the scripts
it has in its cache.

This does not affect any ship which is currently running a command at the time you reinitialize
the cache. It only affects ships you issue that command to after the cache is reinitialized.

For example: transports Dromedary and Bactrian are both running the imaginary command
“Buy ware at worst price”. This command is attached to the script “trade.buywareworst”. You
discover that the script has a bug – Bactrian bought a ware at a trade dock when it could have
paid more for it at the nearby Frosted Sugar Cahoona Cereal factory. You open up the
trade.buywareworst script and fix the bug. You now issue the “Buy ware at worst price”
command to Bactrian again. You soon notice, however, that the change you made to the script
hasn't affected Bactrian, even though you gave it the command again. This is because when
Bactrian was issued the command, it read the script from the script cache.

You now select “Reinit script caches” from the script menu so that you can test out your
changes. At this point, both Dromedary and Bactrian are still running the old version of the
script. The “Reinit script caches” command doesn't force all the ships that are running a script
to reload that script. It only reinitializes the cache where scripts are read from when a new
command is issued.

Now you issue the “Buy ware at worst price” command to Bactrian yet again. Finally, Bactrian
will be running the changed version of the script. Poor Dromedary, on the other hand, will still
be hampered by that old version of the script until you reissue the command to it as well.

Script Debugging

There are two debugging modes, 'logging” and “trace”. Hitting E once turns on logging,
hitting it twice turns on script tracing.

Clear Debug Messages

Removes all log or trace entries from the debugging log for that ship.

Script Debugger Menu

Displays the script log or trace once enabled.

Script debugging is covered fully in section 5.1 on page 25.

Global Script Tasks

A running script can be associated with an object (a ship or a base) – in which case it is said
that the object is running the script. A script can also have no association – it can unattached to
any ship or base. In this case it is called a “global” script.

It is fairly easy to see what scripts are running on a ship. Just target the ship and hit i to pull
up the ship's information screen. Once scripting is enabled, pressing N on the info screen

will reveal all the running scripts for that ship. Terminating a script that is running on a ship is
usually as easy as pulling up the ship's command menu and ordering it to do “None”.

This can't be done for global scripts since, by definition, they aren't attached to a ship. The

pg. 8

The X² MSCI Programmer's Handbook

“Global Script Tasks” entry in the scripting menu allows you to see all the running scripts that
aren't attached to any object. If you have a global script that you want to terminate for any

reason, highlight it with the arrow keys and press =.

If you are terminating a script, do be careful that you are terminating the correct one. There are

often many new global script tasks being starting and stopping. It is quite possible to hit the
= key only to find that the entry you had highlighted changed a fraction of a second before

you did it – so fast that you didn't notice. Make a note of the last few digits of the PID (Process
ID) number before you press =. That way you will be able to double-check that you are

terminating the correct process.

See section 7.1 on page 78 for a detailed discussion of processes.

pg. 9

The X² MSCI Programmer's Handbook

3.3.3.3.Viewing and EditingViewing and EditingViewing and EditingViewing and Editing
ScriptsScriptsScriptsScripts

3.1 3.1 3.1 3.1 Viewing ScriptsViewing ScriptsViewing ScriptsViewing Scripts

Before going into the hows of scripting, it's useful to talk about how a script can be viewed

outside of X². Scripts are all located in the <X²>/scripts directory (where <X²> is the directory
where you installed X²). What you need to do in order to view a script depends on whether or
not you wrote it:

Viewing Scripts You Write

The script editor saves all scripts as XML files. Egosoft has included a nice XML style sheet in
that directory, so all you need to do in order to view a script is double-click it2.

Viewing the Included Scripts

The scripts that Egosoft wrote and included with the game are distributed in a compressed form
and have the extension .pck (meaning packed). To decompress them you need to download
either the official X² modder kit, or the tool X² Modder by OlisJ. The latter is a graphical tool
that can compress or decompress a whole directory at once.

The official kit has a program, x2tool.exe, that (among other things) can compress and
decompress the built- in scripts. To decompress a script, use the syntax:

x2tool -unpack ascript.pck ascript.xml

This will unpack the script and turn it into a standard XML file that can be viewed with almost
any browser.

3.2 3.2 3.2 3.2 Script StructureScript StructureScript StructureScript Structure

Every script follows the same general pattern. Viewing a script in a browser shows a script's
structure very clearly. The following is one of the built-in scripts as it might look in a browser:

2 A minor bug in the stylesheet x2script.xsl in versions of X² prior to 1.3 causes an error if you try and view a script with a
Mozilla-based browser. It is highly recommended that you upgrade to the latest version of X² anyways.

pg. 10

Script !ship.command.follow.pl

Version: 1
for Script Engine Version: 20

Description:

Ship Player COMMAND FOLLOW

Arguments:

• 1: target, Var/Ship, 'the target'

Source Text

signed

001 @ = [THIS] -> call script ' !ship.cmd.follow.std ' : the target= $target
follow distance= null

002 return null

http://www.egosoft.com/x2/download/download.php?get=X2_ModderKIT14.zip
http://www.hrh1000.com/x2/zips/X2ModderSetup02.zip

The X² MSCI Programmer's Handbook

The above example is a script that is attached to the navigation command “Follow ship” for
player-owned ships. It is very simple – it just passes control off to a more generalized script to

handle the command. You will find that many of the built-in command scripts are like this.
Very short, simple scripts that take the specific command and pass it off to a larger, more
generalized script to handle.

Though small, the above example illustrates the structure that is common to all scripts:

Name

The first part of writing a script is choosing its name. This actually isn't as trivial a decision as
it may sound – there are important considerations to keep in mind when choosing a name.

Any script which has a name beginning with an exclamation point is considered to be non-
editable. It won't be listed in the script editor.

Script names beginning with “init.”, “setup.”, “al.plugin.”, and “galaxy.” all have special
meanings as well. They are all run automatically by the game at certain times.

• Init Scripts: Scripts with names beginning with “init.” or “!init.” are run automatically

every time a new game is started or loaded. They can be used to configure menu
commands, and at one time were used extensively to do just that. However, they are run
very early in the process of starting or loading a game, at a time when many aspects of the
galaxy aren't initialized yet. Before the galaxy's stations and ships have been created.
Because of this, special precautions have to be taken in an init script if it is do do something
like, for example, adding a new upgrade to an equipment dock. Because of these
limitations, the use of init scripts has largely been discontinued in favour of:

• Setup Scripts: Scripts with names beginning with “setup.” or “!setup” are also run

automatically every time a new game is started or loaded. These scripts, however, are run
later on in the game initialization sequence. All the galaxy's stations and ships will have
been created before the setup scripts are run. This makes them much safer and easier to use
as a general configuration system than init scripts.

• AL Plugin Scripts: An AL (Artificial Life) plugin is a script designed to be a background

process that enhances the realism of the game universe. Passenger ships that fly from
station to station (even player-owned stations) and warships that fly patrol routes protecting
several sectors. Any script with a name beginning with “al.plugin.” or “!al.plugin.” is a
script that is intended to configure one of these AL plugins. The concept of AL plugins is
covered in detail in section 7.3 beginning on page 84.

•••• Galaxy Ship Init Scripts: When a custom galaxy map is used, a special script is needed to

create the player's initial ship. The game engine will look for a script with a name
beginning with “galaxy.<mapname>.” or “!galaxy.<mapname>” (where <mapname> is, of
course, the name of the galaxy map).

Version

Every script has a version number associated with it. This can help both you, the script
developer, and the end user keep track of when a script is updated. It can also help you to give
your scripts the ability to restart themselves (see section 7.4 beginning on page 87 for a detailed
discussion of command restarting).

Description
Some text describing the purpose of this script. Don't leave this blank – even a very short
description can be quite helpful.

pg. 11

The X² MSCI Programmer's Handbook

Arguments

Your scripts aren't getting into fights – an argument is simply a parameter. Information that a
script is given when it is run or called from another script. If your script is meant to fly a ship

to a sector, then an argument for the script would probably be which sector.

There are three pieces of information which comprise each argument:

1. Name – the name of an argument becomes a variable in your script.
2. Type – Every variable and argument has a type. This describes what kind of

information is being stored or passed.

3. Description – akin to the name, this is a short bit of text that describes the purpose of the
argument. This is for other people who will be using your script. In the example shown
at the beginning of the section, the call script instruction is running another script. The
text “the target” and “follow distance” are the descriptions of the arguments used by the
script that is being called on that line.

Source Text

This is the actual body of the script – the lines of code that make it up. Generally, this will be
by far the largest part of any script.

3.3 3.3 3.3 3.3 Script Line StructureScript Line StructureScript Line StructureScript Line Structure

The script editor allows a line of script
to be put together like blocks of lego.
Every single script instruction is
available through a menu – there is no
need to type in the commands.
Simply hit enter on the “<new line>”
label at the bottom of the script, or on
any existing line. This will bring up
the menu that allows you to select
script instructions 3. Navigate to the
section containing the script

instruction you want, and hit E to

“paste” that instruction into your
script.

The reference section contains a list of
all the available script instructions in the order they appear in the menu, along with an
explanation of each one.

Once you hit E, the instruction (command) you have selected will appear in your script.
Usually the script editor will then automatically switch to a menu to allow you to select the first

parameter to that instruction. What the first parameter is will depend on the instruction. Most
of the time it is to select the object that the instruction will be working on. Sometimes it's not

entirely clear what is being asked. Simply hitting X at this point will drop you out of this
second menu back into the script editor. At this point, the script instruction you picked will be

the currently selected line. The line will be highlighted in yellow. If the instruction takes any
parameters (most do), the one currently will be highlighted in red. The Q and R arrow keys
will highlight the previous or next parameter on the current line.

3 The script editor refers to them as “Script Commands”. This manual will refer to them as script “instructions”. See the
section on terminology in the introduction for an explanation of why.

pg. 12

Illustration 3.1 - Script Instruction Selection Menu

The X² MSCI Programmer's Handbook

3.4 3.4 3.4 3.4 First ScriptFirst ScriptFirst ScriptFirst Script

We will now step through creating a very simple new script from scratch.

1. Enable scripting as explained in section 2.2 on page 7.

2. Bring up the scripting menu as described in section 2.3 on page 7.

3. Press E on the menu entry, “Script Editor”

4. The very top entry on the screen that follows will be <New Script>. Press E with that

selected. You will be asked for a script name. For this example, use “a.sample.first”. At
this point, you should be looking at a screen like this:

5. The top line (Version 0) is highlighted – meaning if you press E, you will be able to edit
it. You can use the Z and Y arrow keys to change which line is highlighted. Change the
version to “1”, and the Description to “Hello World” (yes, we are creating the archtypical
first program). You will have to backspace over the word “Description” before you can do
this. We won't be changing the command name.

6. We will add one argument to this script. Press E over

<New Argument>. You will first be asked for a name.
Call it “Message”. You will next be asked for a type.
Since this argument is going to be a message, select
“Var/String” from the list of types (this will be close to the
bottom of the list) as shown in illustration 3.3. Lastly you
will be asked for a description. The name of the argument
is pretty descriptive by itself, so just put in “Message”
again.

7. In case you haven't figured it out yet, our sample script will
be displaying a message to the player's message log. The
first line of our script will create the message. Use the Y
arrow key to highlight <New Line>. This will be
highlighted in yellow – a little different from the Version,
Description, and Command Name lines. Press E now
and you will get the menu that allows you to select script
instructions as shown in illustration 3.1. The instruction we
want is the first instruction under “General Commands” –
it is labelled “<RetVar/IF><Expression>”. This will more
than likely be the most common scripting instruction you

will use. It is this instruction that allows you to set variables, make expressions, and create
general purpose loops. Highlight that instruction and press E. This “plugs” that

instruction into your script. It will now display a menu where you can choose a variable,
create a new variable, or select a type of if, skip, or while. This is where you select what

pg. 13

Illustration 3.2 - Blank Script

Illustration 3.3 - Step 6, “Select
Var/String from the list of types...”

The X² MSCI Programmer's Handbook

type of instruction this expression will be. In our case, we want to create a new variable.
Move down the list until <Variable> is highlighted and press E. You will now be

prompted for a variable name. Use “DisplayText” as the name and press E again. If
you have done this correctly, the screen displaying your script will now look like this:

8. We now have the beginnings of an expression that will assign a value to the variable
$DisplayText (all variables begin with a '$'). $DisplayText is now being set to something.
We just need to tell it what. The <?> is highlighted red. Pressing E now will allow you
to select the what we will set it to. Do this, and a menu will appear holding all the different
constants and variables that
you can assign to
$DisplayText. Move down
the list until <string> is
highlighted. This means you
will be entering a string (text)
to store in $DisplayText. Hit
E again and you will be
prompted for the the string.
Type in: “Hello World!
Message from player - “ and
hit E to accept it.

9. Use the R arrow key until the “...” is highlighted red and press E to continue to add on
to our expression. Now since this is not the first element of the expression, the menu that
appears will contain operations (often called 'operators' in programming jargon). Select the
“+” operator from the list and press E again.

10. Make sure the “...” is again highlighted red and press E to add our last element to the
expression. Now select “Message” from the list of “Available Variables”. Our expression
is now complete.

11. Use the Y arrow key to once again highlight <New Line> and press E to begin
selecting a new instruction to add. The instruction we want this time is located in the

“Logbook Commands” section. Pick the instruction “write to player logbook <value>”.
As the only parameter to this instruction is <value>, you know that when the script editor

prompts you for the first parameter for the instruction that it is this one. We will be using
our newly created variable for the parameter, so select “DisplayText” from “Available
Variables” and press E. Our simple script is now almost complete. The last instruction
that we need will actually be filled in automatically by the script editor. Every script must
have a return instruction in it. It is this instruction that tells the script engine that the script
has finished. If you don't explicitly enter this instruction into your script, when you save
your script the script editor will place it as the last instruction in the script for you. Before
we save, check to make sure the script looks like it should:

pg. 14

Illustration 3.4 - Adding a variable

Illustration 3.5 - Adding text to the variable

The X² MSCI Programmer's Handbook

12. Now we will save our script. Press X – you will be asked if you wish to save. Your

answer to this question should probably be yes. You should now end up in the script
chooser menu again. This time, your new script should be at the top of the list (the name
“a.sample.first” will probably come alphabetically before any other script you have
installed).

13. Now you will of course want to run the script. To run any script, simply highlight it and
press r. The first thing that rill happen is you will be given a menu with two two entries:
null, and Select Ship or Station. This is where you choose what object will be running the

script. We don't need any object to run it, so select null which will make the script engine
run it as a global script (a script not attached to any object).

14. Once you select null, you will be presented with a screen giving you the name of the script
and all its arguments. This is just a confirmation screen letting you know what you're about
to do. Press E here to move on (alternatively, if you've picked the wrong script, you can
hit X to cancel).

15. If the script hadn't of had any arguments, it would now have been run. Because it has an
argument, you are now presented a screen where you can enter in a value for it. You can

either select null, which would send a null value to the script, or select <string>. We want
to feed a value to the script, so select <string>. You can now enter in the string to send to

the script. How about, “Hope this works!”? Once you enter the text and hit E, you'll be
unceremoniously dumped back in the script list screen. Our script should have written to
the message log, so to see if it has worked, hit X until you are back to the ship's cockpit

and pull up the player message log.

pg. 15

Illustration 3.6 - The completed script

Illustration 3.7 - The new script in the script list

The X² MSCI Programmer's Handbook

Yours should look something not exactly unlike this:

Congratulations! You've just created your first script.

pg. 16

Illustration 3.8 - Results of running the script

The X² MSCI Programmer's Handbook

4.4.4.4.ScriptingScriptingScriptingScripting
FundamentalsFundamentalsFundamentalsFundamentals

An X² script is, in its simplest form, a series of instructions that makes something happen within

the game environment. It is beneficial to think of the different types of instructions as belonging to
two groups:

1. Instructions that perform a task. This is the “meat and potatoes” of a script. Instructions

that make a ship fly somewhere, shoot a gun, send a message. These instructions usually
have a very direct cause and effect relationship. The instruction executes and something
happens in the game universe. Line 2 in the sample script created created in section 3.4 is
an example of this. It simply writes a message to player's message log. The instruction
executed, the message is written – cause and effect.

2. Organizational instructions. These instructions that really do anything in the game universe,
they do something purely inside your script. These instructions make sure that the task
instructions get the right data; they make the task instructions execute at the right time and
in the right order. Line 1 of the same sample script is an example of this. Nothing happens
in the X² universe when it is executed. It is simply organizing the message that will be sent
in line 2.

This is an arbitrary classification, but a useful one. And one that holds true for many (if not all)
programming languages. Generally, all programming languages will have some instructions
that “do” things – that interact with the “real world” in some way, and others that “organize”
things.

There is no easy way to learn the first type of instruction. This is purely rote memorization.
And the worse news is that knowing what sort of tasks can be performed in one programming
or scripting language is often of very limited use in another. In this case it's made a little easier
by the fact the script editor organizes all its instructions into categories. But you still won't
know what sort of tasks are possible until you go over each category, and each instruction. The
good news is that simply learning how to play the game gives you a good idea ahead of time of
what sorts of tasks a script is capable of. You know that ships can attack other ships, that they
can fly from sector to sector and land on stations. You know they can buy and sell wares, or
move them from place to place. You already know the types of tasks can be performed. The
rest is just learning what instructions perform which task. This is covered in section 6, the
reference section.

The second type of instruction – the so-called “organizational” instructions – these are arguable
the more important of the two types. Usually when you are writing a script, you already know
the tasks you want to do. You just need to find out the task instructions that do it. Organizing
your script, though, is paramount to ensuring that everything runs at it should. It is the
framework of any script. This section will focus on the organizational type of instructions, and
give an overview of how to frame your script. Organizational instructions tend to be very
similar across different programming languages, so if you are new to programming in general,
pay particular attention to this section. Once you know how to build the frame, putting in the
rest will be much easier.

4.1 4.1 4.1 4.1 VariablesVariablesVariablesVariables

Variables are simply a way of storing some piece of data temporarily inside your script. No
script would get very far without this ability.

Every variable has two properties, its type and value. The type is just that – a description of the

pg. 17

The X² MSCI Programmer's Handbook

type of data the variable is storing. You don't actually have to tell X² what type a variable is.
Whenever data is stored in a variable, the scripting engine sets the type of the variable for you

based on what sort of data is being stored. There are 22 different data types:

Data Type Name Description

DATATYP_NULL Variable has a null value. The null value has its own data type, since it (by
definition) isn't of any other data type.

DATATYP_UNKNOWN You shouldn't ever see this data type – this means the scripting engine can't
establish the data type of a variable.

DATATYP_VAR Variable – used internally in the scripting engine. Used internally in the
scripting engine. This type won't be seen associated with a script variable.

DATATYP_CONST Constant – used internally in the scripting engine. Used internally in the
scripting engine. This type won't be seen associated with a script variable.

DATATYP_INT Integer – a number from -2,147,483,648 to 2,147,483,647 (32-bit signed integer)

DATATYP_STRING String – text.

DATATYP_SHIP A “pointer” to a ship. Variable references a ship object.

DATATYP_STATION A “pointer” to a station. Variable references a station object.

DATATYP_SECTOR A “pointer” to a sector. Variable references a sector object.

DATATYP_WARE A ware – anything that can be bought or sold

DATATYP_RACE A race (Argon, Boron, Player, etc).

DATATYP_STATIONSERIAL A station serial “letter” - one of the letters of the Greek alphabet.

DATATYP_OBJCLASS Variable contains a class of an object (see section Annex A.5 on page 107)

DATATYP_TRANSPORTCLASSVariable contains the transport class of a container. ST, XL, L, etc.

DATATYP_RELATION Friendly, Neutral, Enemy

DATATYP_OP Operator, as found in an expression. Used internally in the scripting engine.
This type won't be seen associated with a script variable.

DATATYP_EXPR Expression – used internally in the scripting engine. This type won't be seen
associated with a script variable.

DATATYP_OBJECT A “pointer” to an object. Variable references a space object that is not a ship,
station, or sector. For example a sun, nebula, or asteroid.

DATATYP_OBJCOMMAND Variable contains a command mnemonic.

DATATYP_FLRET Variable contains a “Fly Command” return code. See section 6.7 on page 44.

DATATYP_DATATYP Variable contains a data type. For example, when determining the data type of
another variable using the get datatype instruction

DATATYP_ARRAY Variable is an array.

Table 4.1 - Data Types

Every scripting instruction that returns a result can have that result stored in a variable. You
can then manipulate the result in whatever way you like, test it, or pass it along as the input to
some other instruction.

The general expression4 instruction is often used to manipulate variables. With this instruction,
you can generate arbitrary (and quite complex) expressions. You can perform arithmetic,
logical, and binary operations on numbers. You can concatenate strings. You can perform
tests and even loops. It will probably be the single-most used instruction in all your scripts. It
was this instruction that was used to concatenate the strings together for the “first” example
script in section 3.4 on page 13.

4 What is an expression? Simply put, an expression is justa series of symbols and operators that return a value. “1 + 2” is
an expression, returning the value “3”. In that expression, “1” and “2” are symbols, and “+” is the operator.

pg. 18

The X² MSCI Programmer's Handbook

This instruction is available through the script editor under “General Commands” as
“<RetVar/IF><Expression>”.

Any time you wish to create a new variable from the output of any instruction, in the script
editor choose <variable> when asked what to do with the output (this is usually the first
“question” asked by the script editor after selecting an instruction). You will then be asked for
the name of the new variable. See section 3.4 for a walk-through of this procedure.

4.2 4.2 4.2 4.2 ArraysArraysArraysArrays

An array is simply a variable that contains more than one value. Generally they are related
values. A group of ships owned by the player, a set of coordinates, etc. Think of an array like
a column in a spreadsheet or a database. The title of the column is the name of the array. All
the different values in that column would be the array's contents. Each individual value (a
“cell” in our mythical spreadsheet) is referred to as an element of the array.

An array is created with the array alloc instruction:

100 $MyArray = array alloc: size= 10

This creates an array with ten elements and stores it in the variable MyArray. In X² scripting
(and most programming languages), the elements are numbered from zero to size minus one.
In this case, zero to nine. An array must be created with the array alloc instruction before it
can be used. The only exception to this are instructions that return arrays. Those instructions
will allocate the arrays internally themselves.

To place a value in an an array, use the <array>[<element>] = <value> instruction. This will
let you set an element of an array to any value or variable. You can retrieve an element from
an array using the <RetVar/IF><array>[<element>]. The latter will allow you to copy out an
element of the array into a normal variable, or to create a conditional statement (if/skip if) or
while loop based on it.

When a variable is holding an array, it is actually not storing the contents of the array, but a
reference to those contents. For example, consider the following script:

100 $Array1 = array alloc: size= 1
101 $Array2 = $Array1
102 $Array1 [0] = 'Array1'
103 $Array2 [0] = 'Array2'
104 write to player logbook $Array1

You might expect the result that is displayed in the player logbook to be: “Array1”, but this
isn't the case. What will be displayed is: “Array2” (actually, it will be: “array {'Array2'}”,
which means the variable is an array that contains one string element that is “Array2”). This is
because when the above script sets Array2 to be equal to Array1 in line 101, it is not copying
the array, it is only copying a reference to the array. It is saying, point $Array2 to the same
array that $Array1 is pointing to.

There are specific script instructions that allow you to copy the contents of an array. See the
reference section containing array instructions for information on these instructions (section 6.3
starting on page 32).

In most programming languages, all the elements of an array must be of the same type. In X²,
however, each element can have its own data type. In fact, you can even use an element of one
array to store a reference to another array. Remember the above, though – arrays are stored by
reference, not by value.

pg. 19

The X² MSCI Programmer's Handbook

4.3 4.3 4.3 4.3 Conditional InstructionsConditional InstructionsConditional InstructionsConditional Instructions

You are going to want your scripts to be able to make decisions. This ability is given to a script
with conditional statements - organizational instructions that choose what parts of your script to
run based on decisions you program.

There are two main types of conditional instructions in X² scripting. The “if/else/end” set of
instructions, and its younger (and simpler) brother, “skip”.

IF Blocks

The if/else/end set of instructions is usually referred to as an “if block” or an “if/else block”. It
is called a block because the instructions “bracket” a group of other statements, creating a block
of instructions. For example:

100 if $MyVariable > 500
101 ... do something
102 ... do many somethings if you want
103 ... in fact, do as many somethings as you like
104 else if $MyVariable > 50
105 ... do something else
106 else
107 ... or here do something else entirely
108 end
109 ... the script keeps going ...

In the above example, if the variable $MyVariable contains a number greater than 500, then the
first group of instructions (lines 101 through 103) will be executed and then the execution will
continue at line 109. If $MyVariable isn't greater than 500 but is greater than 50, then the
second group of instructions (in this case just one line – 105) will be executed and then the
execution will continue at line 109. Otherwise the third group of instructions (line 107) will be
executed, again followed by line 109. Each group can contain as many statements as you like.

There can be many else if statements in an if block – as many as you need. A particular else if
will only be checked if all the conditions above it fail. In the above example, let's say that
$MyVariable was equal to 750. That is larger than 500, so the condition at line 100 “passes”
and the instructions in that group (lines 101-103) are executed. The number 750 is also larger
than 50, but because the condition at line 100 passed, the condition at line 104 will never be
checked. That's what else if means – if the first condition doesn't pass, then check the second
one, and so on.

There can be many else if instructions, but only ever one else instruction in an if block. That is
because an else by itself is the “do this if all the other conditions fail” contingency instruction.

There doesn't have to be any else if statements in an if block, or any else instructions. There
does have to be an if (of course) in an if block, and an end.

Skip IF

A skip if instruction is sort of like a mini if block. It creates a conditional where there is only
one instruction, and no else. For example:

100 skip if $Target -> exists
101 return null
102 ... the script keeps going ...

The above example is actually a pretty common test performed in X² scripts. The statement at
line 100 says skip the next line if the object pointed to by $Target exists. This means that line
101 would only be executed if the object didn't exist. So, if the object doesn't exist, terminate

pg. 20

The X² MSCI Programmer's Handbook

the script, otherwise, keep going.

Building a Conditional Instruction

The general-purpose expression instruction is the instruction most used to make conditional
statements with. This is because it is the only instruction that lets you create an expression.
This means that it is the only instruction you can use to test a variable against a value or another
variable. In the first example above, both the condition at line 100 and at line 104 were build
out of a general purpose expression.

A conditional instruction doesn't have to be built out of an expression, though. It can be built
out of almost any instruction that returns a value. Almost anywhere that the script editor will
let you pick a variable to store the result of an instruction, it will also allow you to pick one of
several conditional “prefixes”:

Prefix Description

if passes (the statements between this instruction and the following else or end are executed) if
what follows the if is true.

if not passes if what follows the if not is not true.

else if passes if what follows the else if is true and all previous conditions in the same set failed.

else if not passes if what follows the else if not is not true and all previous conditions in the same set failed.

else passes if all previous conditions in the same set failed.

skip if the next instruction is skipped if what follows the the skip if is true.

skip if not the next instruction is skipped if what follows the the skip if not is not true.

Table 4.2 - Conditional Prefixes

Null – the Special Condition

There is one (and only one) condition that you never need an expression to test. That condition
being the test to see whether or not something is (or is not) null/zero.

For example the following conditional statements are all identical:

if $MyVariable != null
if not $MyVariable == null
if $MyVariable

All of the above tests pass if $MyVariable is not null. In actuality, this is not so much as a
special condition as it is simply the way conditionals work. They work by testing whether or
not something is true. Something is considered by a conditional to be true if it isn't null/zero.

4.4 4.4 4.4 4.4 LoopsLoopsLoopsLoops

A loop is a group of instructions that is executed repeatedly until some condition occurs. Loops
are built out of the while and while not prefixes available on any instruction that returns a
value. In X², loops are simply a special kind of conditional instruction. The loop prefixes are
in the same list as the if/skip/else prefixes. So, the above table should have two more entries:

Prefix Description

while Loops (the statements between this instruction and the following end are executed) as long as what
follows the while is true

while not Loops as long as what follows the while not is not true.

Table 4.3 - Looping Prefixes

pg. 21

The X² MSCI Programmer's Handbook

It is fairly easy to make a loop that will execute a specific number of times:

100 $LoopCount = 100
101 while $LoopCount
102 dec $LoopCount
103 ... do whatever you want to do in the loop
104 end

In the above example, everything between the while and the end will execute exactly one
hundred times; line 101 causes it to repeat as long as LoopCount isn't zero.

It is also fairly easy to make a loop that will execute until some external condition occurs:

101 while $Target -> exists
102 ... do whatever you want to do in the loop
103 end

In that example, everything between the while and the end will execute as long as the object
pointed to by $Target exits.

The test for whether the instructions inside a while loop should be executed is performed at the
very beginning of the loop. If that test fails the first time, the contents of the while loop are
never executed at all. In the above example, if $Target didn't exist by the time the script
reached line 101, then line 102 would never have been executed at all.

Some programming languages have a type of loop (usually called a 'for' loop) where the test for
whether the loop should repeat is performed at the end. This would mean that the instructions
inside a loop of this type would always execute at least once. X² has no equivalent to this type
of loop.

4.5 4.5 4.5 4.5 Flow ControlFlow ControlFlow ControlFlow Control

Flow control instructions are just as the name suggests – instructions that control the flow of
script execution. A conditional and a loop could be considered to be forms of flow control.
They control what parts of a script can execute, or how many times a part of a script should
execute.

There are also explicit flow control instructions – instructions that change the flow of script
execution unconditionally. These are the continue, break, and goto instructions.

Continue & Break

The continue and break instructions both work on a loop. They are opposites of a sort. A
continue forces the current loop to skip all the rest of the instructions between it and the loop's
end. It forces the loop to continue from the beginning. The contents of the loop aren't
necessarily executed – that still depends on whether the while loop's test passes or not.

For example, consider this scenario. You are creating a script that simulates a special weapon.
This weapon works on all ships within 5km of your ship. Paranid ships are, however, immune
to this weapon's effects. The code might look something like this:

001 $Targets = find ship: sector= [SECTOR] class or type= Ship race= null flags=
[Find.Multiple] refobj= [PLAYERSHIP] maxdist= 5000 maxnum=1000
refpos= null

002 $Target.Index = size of array Targets
003 while $Target.Index
004 dec $Target.Index
005 $Target.Owner = $Target -> get owner race
006 skip if $Target.Owner != Paranid
007 continue
009 ... do whatever your weapon does here
050 end

pg. 22

The X² MSCI Programmer's Handbook

The above example iterates through all ships within 5km of the current player ship. Any time
the loop comes across a Paranid ship, the continue at line 007 is executed. This causes the rest
of the instructions inside the loop to be skipped over. The loop continues on with the next ship
in the list.

A break instruction is the opposite. It doesn't force a loop to continue on, it is an “early exit”
from a loop. It causes the current loop to stop looping, and for execution to resume after its
end.

What is meant by “current loop” for both continue and break is the inner most loop. For
example, it's quite possible to have nested loops – a loop inside a loop:

100 while [TRUE]
101 ... pick a target
102 while $Target -> exists
103 ... shoot at the target
104 skip if $Target -> is enemy
105 break;
106 end
107 @ wait 100 ms
107 end

In the above example, there are two loops. One loop, the “outer” one, is a permanent loop – it
will execute forever. The inner loop continues as long as $Target exists. But let's say you don't
want to shoot at the target if the pilot ejects and you capture it. So, in line 104 there is a check
to see if the target is still an enemy. If it's not an enemy, then the break at line 105 executes.

That break causes the current, or innermost loop to terminate. If that break executes, then
execution passed beyond the inner loop's end at line 106 to the wait at line 107. The outer loop
isn't “broken” too. If you want to break out of two nested loops, you need two breaks.

Goto

Goto is a very simple instruction that
does just just what it says – it goes to
another location. You define where the
goto will jump to using the define label
instruction. You first create a label
somewhere in your script, and the goto
instruction causes the script engine to
jump to where that label is.

4.6 4.6 4.6 4.6 Look toLook toLook toLook to
ExamplesExamplesExamplesExamples

The above sections have given a good
overview on the different types of
instructions that are available to help you
organize your scripts.

None of this, though, can really teach
you how to structure your scripts. The
tools have been explained, the methods
haven't. Those methods aren't something
that can be taught in any one book. People go to school for years to learn those methods. On
the other hand, there are also people (who are sometimes lynched for being excessive smarty-

pg. 23

Technical Tidbit

Once upon a time in the early days of writing programs, goto-
like instructions were used a lot. In fact, some programmers
used them so much, many programs became almost
impossible to read and a nightmare to debug.

Computer science teachers and professors began to teach
students that it was very bad to use a goto in a program.
Many anal professors took it a step further, though, and
taught that goto should never, ever, ever, EVER be used in a
program. Gleeful teaching assistants would stand hawkish
watch over hapless students. The first goto to pop up earned
a failing grade on the program. Even asking why
programming languages had such “evil” instructions like
goto if it was so bad was a terrible faux pas. Entire lecture
halls full of students would gasp at the hapless “newby” who
had the temerity to ask such a question. In shame the poor
student would be run out of the school.

Ok, it wasn't quite that bad, but goto got a really bad wrap.
Nowadays, it's not considered to be so fundamentally evil.
There are cases where a goto or two will significantly
simplify a program (much to the dismay of the anal
professors of the 80's and 90's). The moral of the story is, if it
will make things easier, use it. But don't fall into the goto
trap – it's not a substitute for a good design.

The X² MSCI Programmer's Handbook

pants) that look simply look at other people's work and learn how to do design and write scripts
that way. This is a very good idea, especially when there are so many scripts available to look
through and learn from.

Decompress the built-in scripts and look through them. Better yet, download all the signed
“bonus plugin” scripts you can from the X² web site and look at those. Many of them have
comments inside that explain how they work. Some of them might even have comments in a
language you understand. Those will be valuable in learning how to organize your scripts.

Learn by example, then learn by doing.

pg. 24

The X² MSCI Programmer's Handbook

5.5.5.5.Script InterfaceScript InterfaceScript InterfaceScript Interface
It would be pretty useless if you couldn't run your scripts. It also would be pretty useless if you
were the only one who every got to run your scripts. The whole point of developing scripts is to
release them so others can benefits from them too (or so that you can get fame and the adulation of
the X² community – that's good too).

This section will explain how your scripts can interface with the real world, or at least the fictional
X² universe. First, though, some information on how to use the interface to debug you scripts.

5.1 5.1 5.1 5.1 Debugging ScriptsDebugging ScriptsDebugging ScriptsDebugging Scripts

The unfortunate reality of script programming is that bugs will be a regular occurance.
Sometimes the reason for a particular script not working isn't immediately obvious. Since
you're not going to help anyone or get famous (you might get notorious though) if your scripts
don't work, this is where the built-in debugger comes in very handy.

Built-In Debugger

The debugger can be enabled for scripts running on any ship – but only for scripts running on a
ship. It is enabled on a ship-by-ship basis through the “Script Debugging” menu entry of the
scripting menu. Whichever ship's command menu you entered the script menu through is the
ship that will have debugging turned on or off through this menu entry. To make this clearer to
the user, the game displays the name of the ship “Script Debugging” menu entry.

To activate debugging for that ship, just hit E on “Script Debugging” in the scripting menu.

There are two debugging modes, 'logging” and “trace”. Hitting E once turns on logging,

hitting it twice turns on script tracing.

With script logging, every statement that is executed on that ship is recorded. You can access
that log and see what has been run by selecting the “Script Debugger Menu” entry two listings
below “Script Debugging”.

With script tracing, the scripting engine enters what is often referred to as a single-step mode.
In this mode each line of a script is executed one at a time, only going to the next line when you
tell it to. This is also done through the “Script Debugger Menu” command. Selecting this after
tracing has been turned on will produce what looks like this:

The top section lists the script statements. Those in white have already been executed. The one
in green is the current one. The bottom window lists any variables that are used in the currently
executing statement. Each variable is listed with its name, it's data type, and its value.

pg. 25

Illustration 5.1 - Script Debugger Menu with tracing enabled

The X² MSCI Programmer's Handbook

You will notice that the current statement in green looks a little odd. It is a while instruction
built out of an expression. The debugger lists all expressions in Reverse Polish Notation5 (also
called postfix notation because the operators come after the operands). While this makes it a
little less readable for those not familiar with this notation, it has the benefit of showing exactly
what the expression interpreter thinks of any expressions you write. If you learn to read this
notation, you will be better able to debug problems that arise from expressions you put in your
scripts.

In trace mode the current instruction will pause for as long as you want. It will only go to the
next instruction when you hit E. This allows you to see exactly what occurs in the script. If

a conditional isn't executing the way you think it should, you can see exactly why.

Logging

Another way to debug scripts is through the use of the player log and log files. The player log
is great as a quick-and-dirty method of testing something out. If you aren't clear on what result
an instruction will give, dump the result to a variable and then write it to the player logbook.

For more complex testing, an external log file is the best way to go. There are three versions of
the write to logfile instruction (see the reference section under Logbook Commands). They
take allow you to write arbitrary data (including the contents of any script variables) to an
external file. Even a script that behaves properly will have people that claim it doesn't (the
notorious PEBCAK problems, meaning Problem Exists Between Chair and Keyboard, are often
the hardest ones to solve). Well written scripts, ones that aren't of trivial length or complexity,
should have some sort of debug output. If for no other reason than it can be used to prove the
script is working properly.

Do not use the logging output capability as a way to get in-character game information out of
the game for external analysis. While it might be interesting in some ways to allow players
who use your scripts to create nice XML charts of what sorts of things your script is doing, it
can also ruin the in-game experience. If a player has to use analytical tools outside of the game
in order to get the most from your script, then your script is violating a gaming principal. In
fact it's a general showmanship principal. That is, never expose what happens backstage to the
audience. It destroys the fundamental contract between player and game, which is the willing
suspension of disbelief. A player can't be living in the game universe if you force that player
back to reality in order to analyze log files.

5.2 5.2 5.2 5.2 Scripts as CommandsScripts as CommandsScripts as CommandsScripts as Commands

Attaching a script to a menu command is probably the single most common reason for writing
scripts in the first place. Doing this is a three step process of writing the command script,
preparing an XML language file, and making a setup script.

Command Scripts

The arguments that a command script takes will depend on what sort of command it is going to
be attached to. The only type of command that provides an argument by default are turret
commands. When the script attached to a turret command is run, it is provided a number
representing which turret it is being run on. Any other arguments in any command script will
cause the scripting engine to prompt the player for input corresponding to their type.

There are also a few more things to consider when writing a script that will be attached to a
command as opposed to one that you run yourself through the script editor. Normally if one is

5 See http://www.calculator.org/rpn.html for information

pg. 26

http://www.calculator.org/rpn.html

The X² MSCI Programmer's Handbook

writing a command script, it is because it is going to get released to the X² community. Perhaps
even submitted for consideration as an official bonus plugin6 (signed script) that will be made
available on Egosoft's web site. A few rules of thumb for writing a script for “release” are as
follows:

1. Make sure the script can handle all contingencies. If the script is a trade script, then can
it handle its home base being destroyed? If it is a turret script, does it stop shooting if
the target stops being an enemy (if you capture the ship)? Does it make assumptions
about a sector being at a certain X/Y location on the map? This won't work on custom
maps. Spend time thinking about all the possible results at each step in your script.
Never make any assumptions that an object still exists later in your script even though it
existed earlier. The rule of thumb is, if your script depends on a certain object existing,
check to make sure it still exists after every instruction that is an interrupt point (see
section 7.2 on page 79).

2. Any text that is displayed to the user must be read from an XML language file If not,
then the script can't be used by players who speak other languages. This isn't necessarily
limited to text displayed in the player's message log. It could also be text used to name a
ship. Any text that a player will see should be in a language file so it can be translated
easily. More on XML language files a little later in this section.

3. The script should not cause any errors – not even ones that the code expects. For
example, you might write code like this:

100 Target.Exists = $Target -> exists
101 Target.IsEnemy = $Target -> is enemy
102 if $Target.Exists AND $Target.IsEnemy
103 ...
104 else
105 ...
106 end

This is incorrect code even though the test at line 102 makes tests for both conditions. It
is incorrect because if $Target doesn't exist, the statement on line 101 will cause an
error. Even errors the code expects can cause delays in the scripting engine. If you
need to have an “else” based on both conditions, then the code should instead be written
like this:

100 Target.Exists = $Target -> exists
101 skip if $Target.Exists
102 Target.IsEnemy = $Target -> is enemy
103 if $Target.Exists AND $Target.IsEnemy
104 ...
105 else
106 ...
107 end

There are essentially two tests to see if the target exists, but this code won't cause any
errors and will be able to be included in a signed “bonus plugin” script.

XML Language File

Most of the game-text for anything from wares to ship descriptions to menu commands are
stored in external XML language files. These language files allow in-game text to be easily
translated to different languages.

These files reside in one of two places:

6 The official contact people for signed “bonus plugin” scripts are ticaki and Burianek. Contact them on the X² forums to
discuss getting your scripts signed. You can also attach your scripts to an email and send it to scripts@egosoft.com

pg. 27

The X² MSCI Programmer's Handbook

1. Inside the <X²>\t directory, where <X²> is the directory that you installed X² into.

2. They can be inside container file pairs that act in a similar way to .zip files. These
containers each consist of two files, a catalogue (*.CAT) file and the data (*.DAT) file. As
of version 1.4 of X², there are four of these containers included with the game, named from
01.CAT/01.DAT through 04.CAT/04.DAT. Both the official X² modder kit, and the tool X²
Modder by OlisJ are capable of extracting the files from these containers. Internally these
containers have the same directory structure as the the game directory. XML language files,
for example, are stored in the \t directory inside these containers. Any file that is inside one
of these containers is treated just as if it were in one of the normal subdirectories under
where you installed X².

There is a pattern to the way these XML language files are named. The first two digits is the
language code; 44 is English, 49 is German. After the language code, the rest of the filename
contains a four-digit number that is used to identify an individual language file to any script
that wants to use it. The load text instruction uses this four-digit code to load the contents of a
language file. Which prefix it uses depends on the language of the game the player has. Thus,
if you want your added scripts to even work on a version of X² that is in a different language
from yours, then you will need to provide XML language files for each language.

The four-digit “ID” code you use for your language file should be unique – it should not be
used by any other script. Pick a number greater than 1000 that isn't used by anyone else7 for
your XML language file.

Here is a sample XML language file for the fictitious trade command “Maintain Product
Quantity”:

Example 5.1 - Sample XML Language File

Notice that the language ID of the file is stored inside the file, as well as being part of the file's
name.

Language files are divided into pages and entries within a page. There are three pages that you
will be interested in for creating command scripts:

2008 This page contains all the mnemonic names for every command and signal. These
mnemonics are used in instructions that take a command or signal as a parameter.
For example, the global script map and the set script command upgrade instructions.
When you place one of these instructions in your script and then select the
command/signal parameter, the script editor gives you a list of all current commands.
Each of the names of those commands is a mnemonic set in page 2008 of an XML

7 It is a good idea to check with the X² scripting community on what in-game resources you are planning to use in a script,
including language file ID codes. Post to the X² Scripts and Modding forum at http://www.egosoft.com/x2/forum/

pg. 28

<?xml version="1.0" encoding="UTF-8" ?>
<language id="44">

 <page id="2008" title="Script Object Commands" descr=" ">
 <t id="430">COMMAND_MAINTAIN_QUANTITY</t>
 </page>

 <page id="2010" title="Commands" descr=" ">
 <t id="430">Maintain product quantity...</t>
 </page>

 <page id="2011" title="Commands" descr=" ">
 <t id="430">MaintainQuant</t>
 </page>
</language>

http://www.egosoft.com/x2/download/download.php?get=X2_ModderKIT14.zip
http://www.hrh1000.com/x2/zips/X2ModderSetup02.zip
http://www.hrh1000.com/x2/zips/X2ModderSetup02.zip

The X² MSCI Programmer's Handbook

language file.

2010 This page contains the long form of the command name. This is the text that is
actually displayed on the command menu.

2011 This page contains the short form of the command name. This is also displayed on
the command menu (to the right of the long name), and is also used in other
information screens as a short-form of the command text.

In the example, the entries within each of the pages has the same id number, 430. The number
that you will need to use for your commands depends on the type of command – depends on
what menu it will be added to. Each menu type command type has 32 available slots that
script-writers can use for extra commands:

Type Id Numbers Menu Mnemonic

Navigation 200-231 Main command menu, Navigation COMMAND_TYPE_NAV_00 to 31

Combat 300-331 Main command menu, Combat COMMAND_TYPE_FIGHT_00 to 31

Trade 400-431 Main command menu, Trade COMMAND_TYPE_TRADE_00 to 31

Special 500-531 Main command menu, Special COMMAND_TYPE_SPECIAL_00 to 31

Piracy 600-631 Main command menu, piracy COMMAND_TYPE_PIRACY_00 to 31

Custom 700-731 Main command menu, Custom COMMAND_TYPE_CUSTOM_00 to 31

General 800-831 Main command menu, General COMMAND_TYPE_GENERAL_00 to 31

Turret 900-931 Turret menu (under the main) COMMAND_TYPE_TURRET_00 to 31

Station 1100-1131 Station “Command Console” COMMAND_TYPE_STATION_00 to 31

Ship 1200-1231 “Additional Ship Commands” menu
under the turrets.

COMMAND_TYPE_SHIP_00 to 31

Table 5.1 - Additional command slots

As shown, each of the “extra” commands already has a mnemonic attached. This is why
making your own isn't strictly necessary. However, the provided mnemonics are necessarily
pretty general. Your script will be a lot more readable if you provide your own. You will,
however, absolutely need to provide the long and short command names.

When choosing which “slot” to use for your command, you need to make sure that it hasn't
been used in other commands. The first sixteen of each type are reserved for Egosoft use.
Generally these are used for signed “bonus plugin” scripts. It may be inevitable that your
command script will need to use a slot that someone else's uses. There are a lot of scripts out
there that add new commands, and there are only 16 slots available for each menu. Some
menus are not used as much. The “Custom”, and “General” menus are less used than, say, the
“Navigation” and “Fight”. If your plugin is generally a combat plugin, but also has commands
for configuring it, consider using different menus for the configuration commands.

Once you have decided what type of command your script will be, create an XML language file
for it as shown in the example, and move to the next step:

Setup Script

At this point you should the script you want to use for your new command and you should have
an XML language file that will be used for the command's menu text. Now all you need is a
way to link them together. This is precisely what a setup script is for.

Section 3.2 on starting on page 10 talked about setup scripts. These are scripts with a name that

pg. 29

The X² MSCI Programmer's Handbook

begins with “setup.”. They are run automatically every time a game is started or loaded.

Your setup script will need to perform three tasks:

1. Load the XML language file. Language files are loaded by the game on demand when a
script executes the load text instruction. The id number used in this instruction is the
four-digit id number you chose as part of the filename for the language file.

2. Link the chosen command with a ware using the set script command upgrade
instruction. This will make it so the script is not available to a player unless the player
has a certain ware. For example, the COMMAND_GET_WARE_BEST command (the
menu item Trade->Buy ware for best price) is attached to the ware “Trade Commands
Software mk.1”. If you want the command to be available regardless of any ware, use
[TRUE] for the ware. See the reference section for details.

3. Link the command with your script. Now all that needs to be done is to tell the scripting
engine which script is to be executed when the player selects the command. This is
done with the global script map instruction.

For our fictional command, a setup script might look like this:

001 * First the XML language file – this will load it
002 * from nn2498.xml, where nn is the language number
003 load text: id= 2498
004
005 * Now attach the command to the correct ware
006 set ship command upgrade: command= COMMAND_MAINTAIN_QUANTITY

upgrade= Trade Command Software MK1
007
008 * Now we attach the command to the correct script
009 global ship map: set: key= COMMAND_MAINTAIN_QUANTITY , class= Ship ,

race= Player , script= 'ship.cmd.maintprod' , prio= 0
010 global ship map: ignore: key= COMMAND_MAINTAIN_QUANTITY , class= Big

Ship , race= Player
011
012 return null

pg. 30

The X² MSCI Programmer's Handbook

6.6.6.6.ReferenceReferenceReferenceReference
An itemization of all X² MSCI instructions, their function, what they return (if anything), and their
parameters. They are listed here in the order they appear in the code editor's instruction selection
menus.

6.1 6.1 6.1 6.1 General (Flow Control)General (Flow Control)General (Flow Control)General (Flow Control)

end (conditional)

Ends an if or while statement's code block.

else

Ends the primary code block for an if statement and begins the alternative execution code block
(the block that is executed in the case that the if statement's test is negative)

continue

Immediately bypasses any remaining code inside a while loop's code block. The while's test is
then re-run and the loop begins again or terminates if the test fails.

break

Breaks out of the current while loop's code block and begins executing code after that loop's
end statement.

goto <label>

Causes the script execution to jump to the point defined by the label you specify.

define label <label>

Allows you to define the name and location of a label that is used as the jump destination for a
goto statement.

6.2 6.2 6.2 6.2 General (Script Calls)General (Script Calls)General (Script Calls)General (Script Calls)

@8 [START|[skip|else] if [not]|while [not]|<retvar> =] <object
pointer> -> call script <scriptname> [<parameter>=<value>]
[...]

Runs the script specified by <scriptname> on the object specified by <object pointer>. If
<object pointer> is null, then it is run as a global script. If the prefix 'START' is used and
<object pointer> is either null, or points to an object that is different from the current object
(i.e. not [THIS]), then the script will be “forked” off and executed in parallel with the current
script. A new process will be started for the script. In this case, the call will return immediately
without waiting for the called script to return. If START is not used, your script will wait after
issuing this instruction until after the called script ends. This is called 'blocking', as the calling
script is blocked until the called script returns.

If this statement is used to START a script on another object, then any script already running on
that object under task zero will be terminated in favour of the new script.

8 An '@' character in a scripting statement marks an “interrupt point”. See section 6.1 for details.

pg. 31

The X² MSCI Programmer's Handbook

A return variable can be assigned to the value returned by the called script. In this case,
whatever value is passed to the return statement in the called script is assigned to the specified
variable in the calling script. The result of the call can also be used as a condition in an if, skip,
or while. If this is done, then the result can only be tested for whether or not it is null. If it isn't
null, then the conditional test passes. If it is null, then it fails.

return null|<value>

Ends the currently running script and either returns control to the script that called it, or
terminates the process in the case there is no calling script.

6.3 6.3 6.3 6.3 General (Arrays)General (Arrays)General (Arrays)General (Arrays)

<variable> = array alloc: size=<size>

Allocates an array with <size> elements and assigns the result to <variable>. The size can be
zero, which will give you an array with no elements – this array can be later appended to.

Arrays are always zero based (the first element is element zero).

[skip] if [not]|while [not]|<retvar> = <arrayvar>[<element>]

Allows you to assign the value of an array element to a variable, or to create a condition or
while loop based on whether the element is set to a value or is null.

<arrayvar>[<element>] = <value>

Allows you to set the value of the element of an array. The array must have previously been
allocated the correct number of elements. You cannot expand the number of elements in an
array with this instruction.

[[skip|else] if [not]|while [not]|<retvar> =] size of array
<array>

Determines the size of an array and either assigns it to a variable, or uses it as a condition in an
if, skip if, or while statement.

<newarray> = clone array <sourcearray> :index <startelement> ...
<endelement>

Creates a new array, assigning it to <newarray> with contents of <sourcearray> starting at
<startelement> and ending with <endelement>. This new array is allocated when this
instruction executes, so a previous call to array alloc array is unnecessary.

copy array <sourcearray> index <startelement> ... <endelement>
into array <destarray> at index <destelement>

Copies the contents of <sourcearray> from elements <startelement> to <endelement> into the
already existing destination array <destarray>. The destination array must have been
previously allocated large enough to hold all the elements.

insert <value> into array <array> at index <element>

Inserts the specified value into the specified array. The value becomes the array's new element
<element>, and the old element that was at that index moves up one. The target array is one
element larger after this instruction executes.

pg. 32

The X² MSCI Programmer's Handbook

append <value> to array <array>

Adds a new value to the end of the specified array. The target array is one element larger after
this instruction executes.

remove element from array <array> at index <element>

Deletes the specified element from an array. The array is one element smaller after this
instruction executes.

resize array <array> to <size>

Resizes the target array so that is has exactly <size> elements. This instruction can either make
an array smaller or larger.

6.4 6.4 6.4 6.4 GeneralGeneralGeneralGeneral

[[skip|else] if [not]|while [not]|<retvar>=] [<variable>|
<constant>|<operator>|<value>] [...]

The general purpose expression instruction. This instruction is capable of setting variables, and
creating general if, skip if, and while statements. This is the instruction that must be used to
create any conditional statement that tests for a condition other than null. An entire loop can be
created using nothing but variations of this statement and end:

Loop = 0
while Loop < 10
 Loop = Loop + 1
end

The following lists gives all the supported operators in order of their evaluation precedence:

1. Primary: (and) precedence override – to explicitly give the order of operator evaluation

2. Unary: ~ arithmetic negation (bitwise complement), ! logical negation

3. Multiplicative: * arithmetic multiplication, / arithmetic division, mod arithmetic modulo

4. Additive: + arithmetic addition, - arithmetic subtraction

5. Relational: < less than, > greater than, <= less than or equal to, >= greater than or equal
to

6. Equality: == equal to, != not equal to

7. & bitwise AND

8. ^ bitwise exclusive OR

9. | bitwise inclusive OR

10. AND logical AND

11. OR logical OR

inc <variable>

Increments the specified variable by one. Functionally identical to:

<variable> = <variable> + 1

pg. 33

The X² MSCI Programmer's Handbook

dec <variable>

Decrements the specified variable by one. Functionally identical to:

<variable> = <variable> - 1

@ [[skip|else] if [not]|while [not]|<retvar>=] wait
<milliseconds> ms

Causes the script to pause for the length of time specified by <milliseconds>. The delay is
approximate. Generally it can be counted on that the delay will be at least for the specified
length of time. No delay can be less than the length of time it takes for one screen refresh9, so a
one millisecond wait will delay until the next refresh.

@ [[skip|else] if [not]|while [not]|<retvar>=] wait randomly
from <leasttime> to <mosttime> ms

Causes the script to pause for a random length of time between <leasttime> and <mosttime>
milliseconds. As in the case of wait, this is approximate.

Every script that runs for an indefinite period of time should include have at least one of these
statements in its main loop. This makes it very unlikely that large numbers of scripts will all
become active at the same time.

<random> = random value from 0 to <maximum> - 1

Returns a random number in the range of zero to <maximum> minus one. The fact that it
automatically subtracts one from the maximum makes it ideal to use for selecting random
elements from an array, where <maximum> is the size of the array.

<random> = random value from <minimum> to <maximum> - 1

Returns a random number in the range of <minimum> to <maximum> minus one.

* <comment>

A null statement – does nothing but add a comment to your code.

<version> = script engine version

Returns an integer with the version of the current MSCI script engine. As of version 1.4 of X²
the number is 25.

This can be used in the event you need to write a script that needs to know whether certain
instructions are available – perhaps if it needs to support more than one version of the game.

<priority> = get script priority

The priority of a running script determines whether or not another script or signal can interrupt
it. This instruction returns the priority that the current script is running at.

9 Take the current refresh rate in frames per second and divide that into 1000 to get the number of milliseconds per frame.
This will be the minimum wait time. A utility called 'fraps' (http://www.fraps.com) can tell you what your current frame
rate is. Of course, the frame rate in any given situation will depend on the processing power of the user's computer who is
running your script. But it's a good thing to remember that any wait placed in your script will delay for at least one frame.
For example, any wait placed inside a loop will cause the loop to iterate at most once per frame.

pg. 34

Tip:
Use this
liberally!

The X² MSCI Programmer's Handbook

set script priority to <priority>

Changes the priority that the current script is running at to <priority>.

[skip|else] if [not]|while [not]|<retvar>= is script with prio
<priority> on stack

The call stack is the list of scripts running in a
given process. Every time one script calls
another, that script is added to the stack. Scripts
are also added to the stack during an interrupt or
signal. Determines if a script of a given priority
is on the call stack. This instruction always runs
on the current task – it cannot be used to
determine if a script of a given priority is running
under a different task ID.

Different script priorities are used for different
functions. Most notably, the different signals
operate at different priorities. This instruction is
often used to determine if a particular signal has
been received by a ship. By checking to see if a
script of priority 99 is on the stack, for example, a script can tell if the ship it is running on has
been attacked and was in the process of fighting back against its attacker.

<object> -> start task <taskID> with script <scriptname> and
prio <priority>: arg1=<value1> arg2=<value2> arg3=<value3>
arg4=<value4> arg5=<value5>

Starts a new task on the target <object> with the given <taskID> and runs the specified script
on it, setting it at the given <priority> and passing it up to five arguments. Arguments that are
not used should be set to null.

This instruction can be used to start turret scripts (tasks with a task ID of from 1 to 6), so-
called “additional ship command” scripts (tasks with a task ID of 10 or 11), and station tasks
(tasks with an ID of 10-19 on stations).

See section 7.1 on page 78 for an in-depth explanation of tasks.

<object> -> interrupt task <taskID> with script <scriptname> and
prio <priority>: arg1=<value1> arg2=<value2> arg3=<value3>
arg4=<value4> arg5=<value5>

If a task is running on task ID <taskID> on the given <object>, and if the currently running
script on that task's stack is running with a priority less than <priority>, then this instruction
will cause that script to pause at it's next interruptible statement (statements marked with a '@'
prefix are interruptible) and cause the script <scriptname> to begin running. When the new
script terminates, the interrupted script will resume at the interrupted statement.

Do note, that the task must already be running to be able to be interrupted.

See section 7.2 on page 79 for an in-depth explanation of interrupts.

pg. 35

Prio Used by

0 All scripts by default

50 Flee response to SIGNAL_ATTACKED

99 Attack response to SIGNAL_ATTACKED

100 SIGNAL_ATTACKED

150 SIGNAL_LEADERNEEDSHELP
SIGNAL_FOLLOWERNEEDSHELP

200 SIGNAL_FORMATIONLEADERCHANGED

300 SIGNAL_CAPTURED

10000 SIGNAL_KILLED

Table 6.1 - Script Priorities

The X² MSCI Programmer's Handbook

<object> -> interrupt with script <scriptname> and prio
<priority>: arg1=<value1> arg2=<value2> arg3=<value3>
arg4=<value4>

The same as the interrupt task instruction, except this one operates exclusively on task zero (the
“main” task of an object). For some reason known only to the developers, this version of the
instruction only accepts up to four arguments, unlike the general form which supports five.

See section 7.2 on page 79 for an in-depth explanation of interrupts.

[skip|else] if [not]|while [not]|<retvar>= get task ID

Returns the current task's ID number. Task zero is always the “main” task of an object. When
you give a normal navigation, combat, or trade command to a ship, for example, the script that
carries out that order runs on task zero of the target object. Tasks one through six run scripts
for turrets one through six. Tasks ten and eleven are used for the scripts that run from a ship's
“additional ship commands” menu.

[skip|else] if [not]|while [not]|<retvar>= get pid

Every time a script runs, it is given a unique identifier called 'pid'. The term pid traces its
routes to Unix systems where this meant “process ID”. The distinction between a process and a
task in X² is a thin one. A task ID is a short form to reference a process that is attached to a
given object to perform a given set of functions. A process ID is the internal reference number
given each time a new instance of a script is instantiated. Different ships will have script that
run under identical task ID numbers. A process ID number for a running process will never be
the same as the process ID for any other currently running process. See section 7.1 for an in-
depth look at processes and tasks.

<object> -> interrupt with script <scriptname> and prio:
<priority>

Use this instruction to interrupt task zero on an object if you don't need to supply the
interrupting script any arguments.

See section 7.2 on page 79 for an in-depth explanation of interrupts.

<object> -> connect ship command/signal <commandorsignal> to
script <scriptname> with prio <priority>

Changes the mapping between a command/signal and a script for a single ship or base so for
that object, the specified script is run whenever the command/signal occurs.

<object> -> set ship command/signal <commandorsignal> to global
default behaviour

Undoes a connect ship command/signal instruction and returns the handling of
<commandorsignal> to the default behaviour on that object.

<object> -> ignore ship command/signal <commandorsignal>

Causes the given command or signal to be ignored on the specified ship.

enable signal/interrupt handling: [TRUE]|[FALSE]

Turns signal and interrupt handling on or off. This instruction works for the process in which
the script is running – not globally.

pg. 36

The X² MSCI Programmer's Handbook

[skip|else] if [not]|while [not]|<retvar>= is signal/interrupt
handling on

Returns true if signal/interrupts are enabled for the current process, false if not.

global script map: set key <commandorsignal>, class=<class>|
null, race=<race>|null, script=<scriptname>, prio=<priority>

Globally maps a script to a command or signal. The command can also be used selectively to
map only for a particular race, or for a particular class of object, or a combination of the two. If
race is null, all races can use the command. If class is null, all object classes can use it.

global script map: remove key <commandorsignal>, class=<class>|
null, race=<race>|null

Removes the link between a command/signal and a script either globally, or selectively for a
class of objects or a race's objects or a combination of the two.

This is often used to create exceptions to the setting of a link. For example, if for some reason
you want a command to be available to all ships except for M1 class ships, you could do the
following:

100 global script map: set key COMMAND_MY_COMMAND, class= ship , race= null ,
script= 'plugin.myplugin.myscript ', prio= 0

101 global script map: remove key COMMAND_MY_COMMAND, class= M1 Battleship ,
race= null

global script map: ignore key <commandorsignal>, class=<class>|
null, race=<race>|null

Causes a particular command or signal to be ignored either globally, or for a particular race's
objects or for a class of object or for a combination of the two.

set script command upgrade: command=<commandorsignal>,
upgrade=<ware>

Links a command with a ware. Once the link has been made, the command will only be
available to a player's ship if that ship has the ware (upgrade) on board.

<ware> = get script command upgrade: command=<commandorsignal>

Returns the ware that is required (that has been set with a previous set script command upgrade
instruction) for a command to be enabled on a player's ship.

set script command: <commandorsignal>

Tells the script engine what your script is currently doing. This is most often used as a way to
display the currently worked on task to the player in whatever menu the player used to run the
command. It is also used sometimes for an interrupt or signal handler script to determine what
sort of activity it was interrupting.

[skip|else] if [not]|while [not]|<retvar>= get script command

Returns whatever the last set script command instruction has set the current process' command
to. This is most frequently used by an interrupt or signal handler to determine what type of
activity it is interrupting.

pg. 37

The X² MSCI Programmer's Handbook

set script command target: <target>

The script command target can be set individually for each task running on an object. This
instruction sets the target for the task it is running on to <target>. This is different from the set
command target instruction which sets the target for the whole ship. This instruction is used to
set the target, for example, on a single turret of a ship. The target can then be retrieved by an
interrupting script which can then determine what the interrupted script was doing when it was
interrupted.

[skip|else] if [not]|while [not]|<retvar>= get script command
target

Returns the command target for the current process.

<retvar> = get datatype[<value>]

Returns the data type of the specified variable.

[skip|else] if [not]|while [not]|<retvar>= is datatype[<value>]
==<datatype>

Returns a [TRUE] or [FALSE] depending on whether or not the data type of <value> is equal
to <datatype>.

<retvar> = read text: page=<pageid> id=<textid>

Returns the text stored in an external XML language file. The file read from must have been
previously loaded with a load text instruction. Both <pageid> and <textid> are numbers which
specify the XML page and id tags where the text is stored in the language file.

<retvar> = sprintf: fmt=<format>, <value1>, <value2>, <value3>,
<value4>, <value5>

Formats a string according the the format specifier in <format>. This derives from the 'C'
language standard library function by the same name. The format string can contain from one
to five “%s” symbols. Each time a %s is encountered, it is replaced with the corresponding
value. For example:

Message = sprintf: fmt= 'You flying the ship %s in sector %s.' ,
[playership] , [sector] , null , null , null

The above will store the string 'You are flying the ship <shipname> in sector <sector>' in the
variable Message.

<retvar> = sprintf: pageid=<pageid> textid=<textid>, <value1>,
<value2>, <value3>, <value4>, <value5>

Identical to the first form of sprintf above, except that it uses text stored in an XML language
file as the format specifier as per the read text instruction.

pg. 38

The X² MSCI Programmer's Handbook

load text: id=<languagefileid>

Loads in an XML language file. The filename is made from a
combination of the language code of the language the player's copy of
X² is combined with a four digit number <languagefileid>. The
language code is actually the international telephone prefix for the
language's country of origin.

For example, a load text instruction with an id of 21 on an English
version of X² would load in the file 440021.xml.

All language files are stored in the <X²>/t directory, where <X²> is the
directory where X² is installed.

[skip|else] if [not]|while [not]|<retvar>=
state of news article: page=<pageid> id=<textid>

Returns whether or not a BBS news article is “active” (whether or not it was currently being
shown on the BBS network or not). Scripts are used in conjunction with the game's internally
hard-coded BBS engine to make news articles come and go.

set state of news article: page=<pageid> id=<textid> to [TRUE]|
[FALSE]

Enables or disables a BBS news article – sets whether or not it is currently being shown on the
BBS network. Scripts are used in conjunction with the game's internally hard-coded BBS
engine to make news articles come and go.

[skip|else] if [not]|while [not]|<retvar>= system date is
month=<month>, day=<day>

Returns [TRUE] if the game date is on or past the given date. Otherwise, returns [FALSE].

<retvar> = playing time

Returns the amount of game time that has elapsed in seconds.

infinite loop detection enabled=[TRUE]|[FALSE]

Turns on or off the scripting engine's infinite loop detection for the running process. Intended
to shut down a runaway script. In practise, it rarely works. The best protection against
runaway scripts is liberal use of the wait instruction and good programming.

set script command upgrade: command=<commandorsignal>,
upgrade=<ware> script=<scriptname>

Similar to the previously described set script command upgrade, except this version allows the
setting of a check script. The check script is a script that is run prior to a menu being displayed
that includes the given command. The return value of the check script determines if the given
command is allowed to run or not. If it is not allowed to run, then the option for it is greyed out
in the command menu. The possible return codes for check scripts are in the constants list
available in the script editor when you pick 'Select Constant ' and are listed in the following
table:

The following is an example of a check script. It is the script used to determine if the
Navigation command, “Jump to sector” is available or not.

pg. 39

Code Language

7 Russian

33 French

39 Italian

44 English

48 Polish

49 German

Table 6.2 - Language Codes

The X² MSCI Programmer's Handbook

001 $flags = [CmdConCheck.OneTime]
002 if $ship -> get amount of ware Jumpdrive in cargo bay
003 * jumpdrive installed, allow command
004 $flags = $flags | [CmdConCheck.Available]
005 else
006 * no jumpdrive but nav software mki is installed, disable command
007 $flags = $flags | [CmdConCheck.Disabled]
008 end
009 return $flags

Because the CmdConCheck.OneTime constant is ORed in to the returned result, this check
script is only run once (just before each time the Navigation commands menu is displayed). The
script checks for the Jumpdrive ware – if it is present, the “Jump to sector” command is made
available. If it is not present, the command is disabled.

set local variable: name=<varname> value=<value>

This instruction takes any script variable that is running, and stores its value on the object (ship
or station) on which the script is running. The term “local variable” is probably unfortunate –
the concept is more akin to storing a file on a hard drive. Think of <varname> as the file name,
and <value> as the data in the file. Any variable type can be stored in this way, including an
entire array.

The difference between a global variable and a local variable, as the set local and set global
instructions use the terms, is whether or not the value is stored locally on a particular ship or
base, or stored globally. To continue the file analogy, the set local variable instruction is like
storing a file in a directory, where each and every ship and station has its own directory. The
set global variable instruction is like storing the file in the root directory – any script running
on any ship or base can access or change the value when it is stored as a global variable.

[skip|else] if [not]|while [not]|<retvar>= get local variable:
name=<varname>

Returns the value of a previously set local variable (see: set local variable). If the local
variable was not previously set, then this instruction returns null.

set global variable: name=<varname> value=<value>

This instruction takes any script variable that is running, and stores its value. The term “global

pg. 40

Constant Description

CmdConCheck.OneTime The check script is run once for each time the menu is displayed. The
status of the command is thus not checked again unless the menu is
terminated and redisplayed. Bitwise OR (the | operator) this with one of
the bottom four results.

CmdConCheck.Infinite The check script is run continuously while a menu is being displayed. If
the status changes, then the menu is updated while it is being displayed.
Bitwise OR (the | operator) this with one of the bottom four results.

CmdConCheck.NeedHomeBase The command is available only if the ship has any home base set.

CmdConCheck.NeedHomeStation The command is available if the ship has a station (not another ship) set
as its home base.

CmdConCheck.Available The command is available.

CmdConCheck.Disabled The command is disabled.

Table 6.3 - Check Script Return Constants

The X² MSCI Programmer's Handbook

variable” is probably unfortunate – the concept is more akin to storing a file on a hard drive.
Think of <varname> as the file name, and <value> as the data in the file. Any variable type
can be stored in this way, including an entire array.

The difference between a global variable and a local variable, as the set local and set global
instructions use the terms, is whether or not the value is stored locally on a particular ship or
base, or stored globally. To continue the file analogy, the set local variable instruction is like
storing a file in a directory, where each and every ship and station has its own directory. The
set global variable instruction is like storing the file in the root directory – any script running
on any ship or base can access or change the value when it is stored as a global variable.

[skip|else] if [not]|while [not]|<retvar>= get global variable:
name=<varname>

Returns the value of a previously set global variable (see: set global variable). If the global
variable was not previously set, then this instruction returns null.

al engine: register script=<scriptname>

Registers an Artificial Life Engine plugin script. The script registered with this instruction
becomes the main event handler for the AL plugin.

See section 7.3 on page 84for more information.

al engine: unregister script=<scriptname>

Unregisters an Artificial Life Engine plugin script. Essentially turns off that AL plugin.

al engine: set plugin <pluginname> description to <description>

Sets the description (the text that is shown on the Artificial Life Settings menu) for an AL
plugin.

See section 7.3 on page 84for more information.

al engine: set plugin <pluginname> timer interval to <interval>s

Sets the interval that the AL plugin timer event occurs at to the specified number of seconds.

See section 7.3 on page 84for more information.

<retvar> = get script version

Returns the version number for the currently running script.

<retvar> = get script name

Returns the name of the currently running script.

[skip|else] if [not]|while [not]|<retvar>= is plot <plotnum>
state flag <plotstate>

 The instruction returns [TRUE] if the specified plot is in the specified state. In The Threat

there are three plots, each with many states. A list of each of the states for all the plots is in
Annex A.1.

pg. 41

The X² MSCI Programmer's Handbook

<retval> = get random name: race=<race>

Creates a random name that is appropriate for the given race.

<retval> = get khaak aggression level

Returns the current level of aggression for the Khaak. This is a global setting from zero to one
hundred. Fifteen is the standard level. Higher than that will increase the number and size of
Khaak clusters that spawn randomly.

set khaak aggression level to <level>

Sets the current level of aggression for the Khaak. This is a global setting from zero to one
hundred. Fifteen is the standard level. Higher than that will increase the number and size of
Khaak clusters that spawn randomly.

6.5 6.5 6.5 6.5 Audio CommandsAudio CommandsAudio CommandsAudio Commands

play sample <samplenumber>

Plays a sound effect sample. A chart of the possible effects is in Annex A.2.

play sample: incoming transmission <transmissiontype>, from
object <source>

Sends a voice message to the player with news of a hail, incoming transmission, scan, or SOS
depending on <transmissiontype>. The obvious intention was to also support informing the
player of which ship originated the message, but as of version 1.4 of X² – The Threat, this does
not function.

There are four constants available in the script editor's “Select Constant” list that are
specifically for this instruction:

Constant Name Value Message Spoken

[IncomingTransmission.Greeting] 1362 “We are being hailed”

[IncomingTransmission.Message] 1361 “Incoming message”

[IncomingTransmission.Scanned] 1363 “We are scanned”

[IncomingTransmission.SOS] 1360 “Emergency message from”

Table 6.4 - Incoming Message Constants

The values for the constants are taken from the text list found in the general XML language file
for the game (xx0001.XML where xx is your language code) under page 13. See the speak text
instruction for more information.

<object> -> send audio message <messagetype> to player

Sends an audio/video message to the player with the ship specified in <object> being the
“source” of the message. The message is different depending on the race that owns <object>,
or according to the race of the pilot (in the case of pirate-owned ships). There are four classes
of messages, each with its own symbolic constant in the script editor's “Select Constant” list:

pg. 42

The X² MSCI Programmer's Handbook

Constant Name Value Message Type

Comm.DLG_POL_ILLEGAL_GOODS 75 Illegal goods detected on the player's ship – drop the goods

Comm.DLG_POL_LAST_WARNING 76 Last warning to drop the illegal goods on the player's ship

Comm.DLG_POL_LEGAL_GOODS 77 Scanned ship, no illegal goods

Comm.C_START_FIGHTING 4 Message send as the ship is about to attack you

Table 6.5 - Audio Messages

send incoming message <message> to player: display it=[TRUE]|
[FALSE]

The player will hear the “incoming message” signal and voice, and <message> will be
displayed in the player's message log. If display it=[TRUE], then the message will pop up in
front of the user immediately. This is generally a very bad thing to do unless the message is of
critical importance10.

[START|[skip|else] if [not]|while [not]|<retvar>=] speak text:
page=<pagenum> id=<idnum> priority=<priority>

This instruction can play any game voice message. It can be used to do the same task as play
sample: incoming transmission, and with some good scripting, can give the player the source of
the message. It can also play the same voice clips as the send audio message instruction,
although it will not display the video.

The common denominator to any message played with this instruction is that the text for the
message is stored in an XML language file. If the player has not turned off the displaying of
subtitles, this instruction can display as a subtitle the text from any message in any language
file – even user-created language files supplied with scripts. If the message has a
corresponding audio component, it is played at the same time.

The file nn0001.XML (where nn is your language code 44 for English) contains the text for all
the phrases where there is a corresponding audio or audio/video recording See Annex A.3
Speech Samples Catalogue for a breakdown of most of the playable voice clips.

6.6 6.6 6.6 6.6 Logbook CommandsLogbook CommandsLogbook CommandsLogbook Commands

write to player logbook <value>

Writes any value as a message in the player's logbook. References to objects will return the
name of that object. For example, writing [PlayerShip] will write the name of the current ship
the player is flying.

write to player logbook: printf: fmt=<format>, <value1>,
<value2>, <value3>, <value4>, <value5>

Formats and writes a message to the player's logbook. Formatting is performed the same as for
the sprintf instruction.

10 Causing the message to display immediately is a good way to ensure that your script will never be signed as an official
“bonus plugin”

pg. 43

The X² MSCI Programmer's Handbook

write to player logbook: printf: pageid=<pageid>
textid=<textid>, <value1>, <value2>, <value3>, <value4>,
<value5>

Formats and writes a message to the player's logbook. The format string is read from an XML
language file as per the sprintf: pageid instruction.

<object> -> write to player logbook <value>

It's not known what the intention of this instruction was – perhaps to put a prefix on a message
indicating its source. In any case, it doesn't do anything.

write to logfile #<lognumber> append=[TRUE]|[FALSE]
value=<value>

Writes <value> to an external file named logNNNNN.txt where NNNNN is the number
specified in <lognumber>. If append is true, then the value is added to the end of the log file.
If append is false, then the contents of the log file are replaced with <value>.

write to logfile #<lognumber> append=[TRUE]|[FALSE] printf:
fmt=<format>, <value1>, <value2>, <value3>, <value4>,
<value5>

Formats and writes text to an external file. See write to logfile and sprintf for more information
on the log file and the formatting respectively.

write to logfile #<lognumber> append=[TRUE]|[FALSE] printf:
pageid=<pageid> textid=<textid>, <value1>, <value2>,
<value3>, <value4>, <value5>

Formats and writes text to an external file. See write to logfile and sprintf: pageid for more
information on the log file and the formatting respectively.

6.7 6.7 6.7 6.7 Fly CommandsFly CommandsFly CommandsFly Commands

Many of the return values for flight and combat instructions are from a group of constants
reserved for this purpose. They start with FLRET_ and are available to select (such as to put in
an if statement) from the “Select Constant” menu in the script editor.

Please make special note of the return values for each instruction. There is little consistency
between instructions (even related instructions) on which conditions return which result.

[skip|else] if [not]|while [not]|<retvar>= <ship> -> fly to home
base

Causes the specified ship to undock, fly to the sector where its home base is located, and dock.

This instruction will return FLRET_LANDED on success, FLRET_BREAK if another “fly
command” instruction is executed on the ship before it completes, FLRET_INTERRUPTED if
the script executing this instruction is interrupted, or FLRET_ERROR on error. Not having a
home base set on the target ship is an error.

[skip|else] if [not]|while [not]|<retvar>= <ship> -> fly to
station <station>

Causes the specified ship to undock, fly to the sector where <station> is located, and dock.

pg. 44

The X² MSCI Programmer's Handbook

This instruction will return FLRET_LANDED on success, FLRET_BREAK if another “fly
command” instruction is executed on the ship before it completes, FLRET_INTERRUPTED if
the script executing this instruction is interrupted, or FLRET_ERROR on error.

[skip|else] if [not]|while [not]|<retvar>= <ship> -> fly to
sector <sector>

Causes the specified ship to undock and fly to <sector>.

This instruction will return FLRET_NOCOMMANDS either when it
arrives at the destination sector or if the destination sector is unreachable,
FLRET_BREAK if another “fly command” instruction is executed on the
ship before it completes, or FLRET_INTERRUPTED if the script executing this instruction is
interrupted, or FLRET_INVALIDPARMS if <ship> is not valid.

[skip|else] if [not]|while [not]|<retvar>= <object> -> find
nearest enemy ship: max.dist=<distance>

Returns the nearest enemy ship within the specified range, or null if there are none.

[skip|else] if [not]|while [not]|<retvar>= <object> -> find
nearest enemy station: max.dist=<distance>

Returns the nearest enemy station within the specified range, or null if there are none.

[skip|else] if [not]|while [not]|<retvar>= <object> -> fire
lasers on target <target> using turret <turretid>

Fires the ship's main (if <turretid> is zero) turret lasers at <target>. It should be noted that
there is actually no requirement to have the ship exactly face the target in the case of the main
lasers, or to turn a turret to face the target in the case of turret lasers. There is actually no
enforced correlation between the direction a turret “faces” (ie: the direction a turret's camera is
facing) and the direction the lasers fire. The target does, however, need to be within the firing
arc of the guns. The refire delay for the weapons in the turret is enforced – the instruction will
fail if an attempt is made to fire the weapons faster than they are capable.

Returns [TRUE] (1) on success, [FALSE] (null) on failure.

@ [skip|else] if [not]|while [not]|<retvar>= <object> -> turn
turret <turretid> to target <target>: timeout=<timeout>ms

Turns the specified turret's camera to face <target>. This instruction is used to enforce a
relationship between a turret's camera and its guns. The general structure of a script that will
control a turret, is:

1. Obtain a target
2. Turn the turret to face the target
3. If FLRET_FIREFREE is returned when you turn the turret, then fire lasers on target.
4. Repeat from step 2 until one side cries “Hold, enough!”

It should be noted that the timeout time only indicates how much time the camera has to turn to
face the target – not how long the instruction will actually take to execute. In practise, the
delay introduced by this instruction ranges in the 150-250ms range regardless of the timeout
specified. This makes it very difficult (read impossible) to fire some weapons, such as mass
drivers, at anywhere near their rated firing rate unless the turn-turret step is ignored.11 Other

11 Having a script signed that ignores the “turn turret to target” step will be near to impossible. Regardless of the firing rate

pg. 45

WARNING :
An invalid argument for

<sector> in this instruction
will cause the ship to fly to

Kingdom End

The X² MSCI Programmer's Handbook

weapons, such as HEPT/PPC with 270ms re-fire delays can, with very careful timing, be fired
at close to their maximum re-fire capacity.

Returns FLRET_FIREFREE on success, FLRET_TIMEOUT if the timeout period elapses
before the camera is able to turn to face the target, FLRET_INTERRUPTED if the script
executing this instruction is interrupted, FLRET_NOCOMMANDS if an invalid turret is
specified, or null if any of the other arguments (including <object>) are invalid.

@ [skip|else] if [not]|while [not]|<retvar>= <ship> -> attack
run on target <target>: timeout=<timeout>ms

The fighter equivalent to turn turret to target, this instruction is used to point a ship at a target
in preparation for firing using the ship's main lasers. This instruction turns the ship to the target
and accelerates to maximum. If the ship is pointed at and in firing range of the target within
<timeout> milliseconds, then FLRET_FIREFREE is returned signalling that it is clear to fire
weapons. Further calls to this instruction do not initiate a “new” attack run, they will merely
return FLRET_FIREFREE to signal that the ship is still on its attack run. This will continue to
happen until at some point the target ship manoeuvres out of range, or the firing ship gets so
close that the collision avoidance kicks in. This, then, is the general structure of a fighter
combat script:

1. Obtain a target.
2. Approach the target approximately to weapons range.
3. Perform attack run
4. If FLRET_FIREFREE is returned, fire lasers on target..
5. Repeat from step 3, perhaps performing a defensive manoeuvre from time to time.

Of course, this is just a simple outline, but with allowances for following a target to other
sectors is pretty much exactly what the built-in fight.attack.object script does.

Returns FLRET_FIREFREE on success, FLRET_TIMEOUT if the timeout period elapses
before entering firing range, FLRET_BREAK if an invalid target is specified or if the
instruction is “cancelled” before completing (such as if the ship gets to close to the target and
automatically performs collision avoidance), FLRET_INTERRUPTED if the script executing
this instruction is interrupted, or FLRET_INVALIDPARMS if an invalid <ship> is specified.

@ [skip|else] if [not]|while [not]|<retvar>= <ship> -> defensive
move: type=<type>, intensity=<intensity>,
timeout=<timeout>ms, avoid object=<object>|null

Causes the ship to begin a defensive manoeuvre – breaking off, spirals, and whatnot. Currently
setting the type of manoeuvre does nothing – this is completely controlled by the hard-code.
Set this to null in all scripts. Intensity is in percent – from 1 to 100, and indicates how sharp the
manoeuvres will be. An object to avoid can be specified, in which case the ship will attempt to
move away from that object. This can be left null to perform general evasive manoeuvres.

Returns FLRET_NOCOMMANDS after the timeout expires (assume success),
FLRET_INTERRUPTED if the script executing this instruction is interrupted, or null if <ship>
is invalid.

@ [skip|else] if [not]|while [not]|<retvar>= <ship> -> move to
ware object <ware> for collecting: timeout=<timeout>ms

Manoeuvres a ship to prepare it to collect a flying ware (a ware that is in space and collectible).
When finished the manoeuvre (if successful) the ship will be directly pointed at the ware and

issue, this is considered “cheating” on the part of a script.

pg. 46

The X² MSCI Programmer's Handbook

within range to either collect it or shoot it.

Returns FLRET_FIREFREE on success, FLRET_BREAK if another “fly command”
instruction is executed on the ship before it completes or if <ware> is an invalid object12,
FLRET_INTERRUPTED if the script executing this instruction is interrupted, or
FLRET_INVALIDPARMS if <ship> is invalid.

[skip|else] if [not]|while [not]|<retvar>= <ship> -> catch ware
object <ware>

Brings <ware> into the cargo bay of a ship once the ship has been put into position by use of
the move to ware object for collecting instruction. The ware must be of a size class that the ship
is capable of carrying, and the collecting ship must have enough room in its cargo bay for it.
After executing this instruction, <ware> will be removed from the sector, whether or not the
collecting ship has room for it.

Returns [TRUE] (1) if the ware is added to the collecting ship, [FALSE] (0) if the ware is not
added to the collecting ship, or if any of the arguments are invalid.

@ [skip|else] if [not]|while [not]|<retvar>= <ship> -> move
around <timeout> ms

While there are many times in the X universe where a ship isn't doing anything, there seems to
be a cardinal rule that no ship can look like it's not doing anything. This instruction does
exactly what it says – causes a ship to just move around aimlessly for the specified length of
time. Most of the universe's capital ships are doing this most of the time – which is why you
generally don't want to get too close to one with a capital ship of your own, because this
instruction emulates a pilot with severe myopia who has consumed large amounts of space fuel.

Returns FLRET_NOCOMMANDS when the <timeout> period elapses, or
FLRET_INVALIDPARMS if <ship> is invalid.

@ [skip|else] if [not]|while [not]|<retvar>= <ship> -> escort
ship <target>

Causes a ship to escort (follow) another, launching the ship first if it is docked/landed. This
instruction has no timeout period – it will continue ad infinitum. This instruction is also very
difficult to cause to break. Most “fly command” instructions, when they are executed in one
process will stop and return FLRET_BREAK if another process executes a different “fly
command” instruction on the same ship. Not so with this instruction. It is possible to get
control of the ship back from this instruction with a script in a different process by using a set
follow mode [FALSE] instruction, but that will not cause the original follow object instruction
to return. Once one script has executed this instruction on a ship, only the destruction or
removal (to another sector) of the escorted ship, or the termination or interruption of the script
will cause it to return.

Returns FLRET_BREAK if <target> is invalid or if the escorted ship is destroyed or moves out
of sector, FLRET_INTERRUPTED if the script executing this instruction is interrupted, or
FLRET_INVALIDPARMS if <ship> is invalid.

12 In this case, invalid object means if it is passed a value that isn't an object or an object that doesn't exist. If <ware> is, for
example, actually a ship then the instruction will still work. In this sense, there is little difference between this instruction
and attack run on target.

pg. 47

The X² MSCI Programmer's Handbook

@ [skip|else] if [not]|while [not]|<retvar>= <ship> -> escort
ship <target>: timeout=<timeout> ms

Similar to escort ship, except this instruction will time out after a <timeout> milliseconds.

Returns FLRET_BREAK if <target> is invalid or if the escorted ship is destroyed or moves out
of sector, FLRET_TIMEOUT if the timeout period elapses, FLRET_INTERRUPTED if the
script executing this instruction is interrupted, or FLRET_INVALIDPARMS if <ship> is
invalid.

<ship> -> set formation <formation>

Sets the formation for all ships that are following the specified ship. There are seven symbolic
constants (available through the script editor's “select constant” list) available for <formation>

Constant Value Example

[Formation.Delta] 0

[Formation.Line] 1

[Formation.X] 2

[Formation.XDelta] 3

[Formation.BigShipEscort] 3

[Formation.Pyramid] 4

[Formation.Random] 5

pg. 48

The X² MSCI Programmer's Handbook

<ship> -> add to formation with leader <leadership>

Adds a ship to the flight formation of <leadership>. The target ship will take up a slot in the
leader's formation – when the target ship is ordered to escort the leader, it will do so in
formation. The target ship also becomes eligible to receive formation-associated signals.

<ship> -> remove from any formation

Removes the specified ship from any formation it may be in.

[skip|else] if [not]|while [not]|<retvar>= <ship> -> get
formation leader

When <ship> is any ship in a formation (including the lead ship), this instruction will return the
lead ship.

Returns the lead ship of a formation (if any), or null if <ship> is invalid or is not in any
formation.

<retvar>= <ship> -> get formation follower ships

Returns an array of ships that are the followers of a formation in which <ship> is a member, or
null if <ship> is invalid or if there are none.

START <object>-> command <command>: arg1=<value1>,
arg2=<value2>, arg3=<value3>, arg4=<value4>

Starts a command on an object as though a player had selected the command through the
menuing system, except that with this method, the command's arguments are preselected.

<object> -> send signal <signal>: arg1=<value1>, arg2=<value2>,
arg3=<value3>, arg4=<value4>

Sends a signal to the target object. A signal sent in this manner cannot be distinguished from a
signal that occurs “naturally”.

See section 7.2 on page 79for more information on signals.

@ [skip|else] if [not]|while [not]|<retvar>= <ship> -> follow
object <target> with precision <precision> m

Causes the ship to follow the target object, launching first if it is landed/docked. Whereas
escort ship is intended for use in formation flying and making one ship protect another, this
instruction is mostly used to cause a ship to get up close to something as a prelude to something
else – often an attack.

The autopilot will attempt to get the ship within <precision> metres of the target object. Like
the escort ship instruction, this one is almost impossible to terminate. Executing a
countervailing “fly command” instruction in another process will not cause this instruction to
break. It is possible to get control of the ship back from this instruction with a script in a
different process by using a set follow mode [FALSE] instruction, but that will not cause the
original follow object instruction to return. Only the destruction of the target object, its removal
to another sector, or the termination or interruption of the script running this instruction will
stop it. Be very careful about using this instruction to make a ship follow a faster ship. In most
cases, it is highly recommended to use the follow object ... timeout=<timeout> instruction
instead.

pg. 49

The X² MSCI Programmer's Handbook

Returns FLRED_TARGETREACHED upon success, FLRET_INTERRUPTED if the script
executing this instruction is interrupted, FLRET_BREAK if the target is invalid or if the target
is destroyed or moves to another sector, or FLRET_INVALIDPARMS if <ship> is invalid.

@ [skip|else] if [not]|while [not]|<retvar>= <ship> -> follow
object <target> with precision <precision> m :
timeout=<timeout> ms

Similar to follow object, except this one wile time out after <timeout> milliseconds.

Returns FLRED_TARGETREACHED upon success, FLRET_TIMEOUT if the timeout period
expires, FLRET_INTERRUPTED if the script executing this instruction is interrupted,
FLRET_BREAK if the target is invalid or if the target is destroyed or moves to another sector,
or FLRET_INVALIDPARMS if <ship> is invalid.

<object> -> set follow mode [TRUE]|[FALSE]

Turns follow mode on or off for <object>. Turning follow mode off will allow a different
process to take control of a ship that is executing an escort ship or follow object instruction.
Doing this, however, will not cause the original
escort or follow instruction to return.

[skip|else] if [not]|while [not]|
<retvar>= <ship> -> get follow
mode

Returns [TRUE] if <ship> is currently following
another object, [FALSE] if not.

<ship> -> set destination to
<destination>

Sets the destination for <ship>. Other than
displaying this for the player on a ship's info screen, this has no effect. The destination can be
set to an object in space, or to a sector. The ship doesn't actually have to be doing anything to
have its destination set.

[skip|else] if [not]|while [not]|<retvar>= <ship> -> get
destination

Returns the destination of a ship as set by the set destination instruction.

<ship> -> set attack target to <target>

Sets the attack target for a ship. It has no function other than to change the text displayed on
the ship's information screen beside the “Action” heading to “Attacking <target>”.

[skip|else] if [not]|while [not]|<retvar>= <ship> -> get attack
target

Returns the attack target of a ship as set by the set attack target instruction.

pg. 50

Illustration 6.1 – Ship's info screen showing
its destination

The X² MSCI Programmer's Handbook

@ [skip|else] if [not]|while [not]|<retvar>= <ship> -> move to
position x=<xcoordinate> y=<ycoordinate> z=<zcoordinate> with
precision <precision> m

Causes a ship to move to within <precision> metres of the specified position. The position
coordinates are in metres from the centre of a sector's trade grid. It is advisable to be more
liberal with the precision as the size of the ship increases, especially if the position might be
around other objects.

Unlike the escort ship and follow object instructions, this one can be overridden by a “fly
command” instruction in another process. However, like the escort ship and follow object
instructions, if this is done then the move to position instruction will never return – it does not
return a FLRET_BREAK in that circumstance.

Returns FLRET_NOCOMMAND when <ship> reaches its destination coordinates,
FLRET_INTERRUPTED if the script executing this instruction is interrupted, or
FLRET_INVALIDPARMS if <ship> is invalid.

<object> -> set command <command>

Set the apparent command that <object> is executing. This is for information purposes only –
it does not actually cause <command> to execute on <object>. It causes the text associated
with the specified command to appear on a ship's info screen beside the “Cmd” heading.

While the instruction ostensibly allows you to set the command on any object, it only actually
works when <object> = [THIS] – that is, it only works when the instruction is executed by the
object that it is trying to set the command on. Additionally, the ship's command setting resets
once the script that executes this command terminates.

This instruction is useful if you are writing a script that has multiple functions. You can use set
command to allow the user to see what the ship's current goal is.

[skip|else] if [not]|while [not]|<retvar>= <object> -> get
command

Returns the command set for an object. This can be either a command previously given an
object through the command menus, or the command set on an object through the use of the set
command instruction.

<object> -> set command target
<target>

Many commands have a target they operate on.
The obvious example is ordering a ship to attack
something. This instruction sets the target of the
current command. This is displayed on the a ship's
info screen under the command.

This instruction has the same limitations as the set
command instruction in that it must be executed by
a script running on <object>.

[skip|else] if [not]|while [not]|<retvar>= <object> -> get
command target

Returns the command target set for an object. This can be either a command target previously
given an object through the command menus, or the command target set on an object through

pg. 51

Illustration 6.2 – This ship's command target is
another ship that it is escorting.

The X² MSCI Programmer's Handbook

the use of the set command target instruction.

<object> -> set command target2 <target2>

While many commands have a target they operate on, some commands also have a secondary
target. For example, ordering a ship to buy a ware – you must tell the ship what ware, and
where to buy it. In that case, the ware is the target, and the station to buy it from is the target2.
This instruction allows you to set target2 on an object. This is displayed on a ship's info screen
under the command and target.

This instruction has the same limitations as the set command instruction in that it must be run
on <object>.

[skip|else] if [not]|while [not]|<retvar>= <object> -> get
command target2

Returns the command target2 set for an object. This can be either a command target2
previously given an object through the command menus, or the command target2 set on an
object through the use of the set command target2 instruction.

<retvar>= <ship> -> select new formation leader by: ship class=
[TRUE]|[FALSE] strength=[TRUE]|[FALSE] min.speed=[TRUE]|
[FALSE]

When the lead ship in a formation is destroyed, this instruction can be used to select a new
leader – for example, in a handler for the SIGNAL_KILLED signal. You can individually
select whether ship class, strength, or speed are used as selection criteria for the new leader.
This instruction does not actually give leadership to the new ship – use the give formation
leadership instruction for that.

Returns the ship chosen as the new leader on success, or null on failure.

[skip|else] if [not]|while [not]|<retvar>= <ship> -> has
formation ships

Returns [TRUE] if <ship> has ships following it, [FALSE] if not.

<retvar>= <ship> -> give formation leadership to <newleader>

This instruction allows you to explicitly set a new ship to take over leadership of a formation.

Returns [TRUE] on success, [FALSE] on failure.

<ship> -> set tactical to <number>
<retvar>= <ship> -> get tactical
Not used. Currently these instructions have no effect.

[skip|else] if [not]|while [not]|<retvar>= <ship> -> is <target>
in firing range of turret <turretnum>

Checks to see if a given ship's turret is capable of firing on <target>. This can also be used to
check to see if a ship's main laser can fire on a target by using a <turretnum> of zero. This
instruction checks the range and arcs on the specified turret using the weapons it currently has
loaded.

Returns [TRUE] if <target> is in the turret's arcs and range, [FALSE] if not.

pg. 52

The X² MSCI Programmer's Handbook

<retvar>= <ship> -> find enemy in firing range of turret
<turretnum>

Searches for an enemy ship that is in the given turret's firing range and arcs. There is no
guarantee that this enemy is the closest, strongest, etc – there is no prioritization of targets
whatsoever.

Returns an enemy ship on success, null on failure.

<object> -> set command: <command> target=<target>
target2=<target2> par1=<par1> par2=<par2>

A single instruction that performs the functionality of the set command, set command target,
and set command target2 instructions. The par1 and par2 settings are for extra parameters –
this information does not seem to be given to the user on any info screen.

[skip|else] if [not]|while [not]|<retvar>= <ship> -> fire
missile <missile> on <target>

Fires the specified missile (this should be the missile's ware) on <target>.

Returns [TRUE] if a missile was fired, [FALSE] if not.

[skip|else] if [not]|while [not]|<retvar>= <ship> -> get current
missile

Returns the ware of the currently selected missile for <ship>, or null if there is none or on error.

[skip|else] if [not]|while [not]|<retvar>= <ship> -> find best
missile for target <target>

Returns what the game engine believes is the most appropriate missile to fire on <target> out of
the missiles that <ship> currently has in stock.

<retvar>= best missile type for target <target>

Returns what the game engine believes is the most appropriate missile to fire on <target>.

[skip|else] if [not]|while [not]|<retvar>= <ship> -> launch
<dronecount> fight drones: protect me or attack
target=<target>

Launches the given number of fighter drones with orders to protect <ship>, or to attack the
given target.

Returns [TRUE] if drones were able to launch, [FALSE] if not.

[skip|else] if [not]|while [not]|<retvar>= <ship> -> is missile
<missile> ready to fire

Returns [TRUE] if <ship> is capable of firing <missile> and if it has them in stock, [FALSE] if
not.

[skip|else] if [not]|while [not]|<retvar>= <ship> -> should a
missile be fired

Returns true if, according to a ship's set missile fire probability, it should currently fire a
missile, or [FALSE] if not. This instruction is largely ignored in favour of the check, select and

pg. 53

The X² MSCI Programmer's Handbook

fire missile instruction.

<retvar>= <ship> -> get missile fire probability

Returns the probability of a missile launch in percent. This is the same probability that is set
from a ship's command screen.

<ship> -> set missile fire probability to <probability>

Sets a ship's missile fire probability to <probability> percent.

<retvar>= <ship> -> get missile fire time difference in seconds
<ship> -> set missile fire time difference in seconds to <time>

Not used. Currently these instructions have no effect.

[skip|else] if [not]|while [not]|<retvar>= <ship> -> fits laser
<laser> into turret <turret>

Returns [TRUE] if the ware <laser> is a laser that turret number <turret> on <ship> is capable
of mounting, [FALSE] if not. Set <turret> to zero to check the main ship's gun.

[skip|else] if [not]|while [not]|<retvar>= <ship> -> get max
number of lasers in turret <turret>

Returns the number of guns that <turret> can hold. Set <turret> to zero to check the ship's
main gun.

<retvar>= <ship> -> get laser type in turret <turret> at slot
<slot>

Returns the ware of the gun currently fitted in the specified slot and turret, or null if there is no
gun fitted.

<retvar>= <ship> -> get number of turrets

Returns the number of turrets on <ship>. The main gun is not counted. The only way to tell if
a ship has a main gun is to use get max number of lasers in turret 0.

<retvar>= get range of missile type <missile>

Returns the range in metres for the specified missile.

<retvar>= <object> -> find nearest missile aiming at me

Returns the closest missile currently targeted on <ship>, or null if there is none. This is the
only instruction capable of searching for a missile.

[skip|else] if [not]|while [not]|<retvar>= <ship> -> decouple
ships

Causes a Khaak cluster to break apart. Returns [TRUE] if successful, [FALSE] if not.

[skip|else] if [not]|while [not]|<retvar>= <ship> -> is
decoupled ships leader

Returns true if <ship> is the formation leader for a decoupled Khaak cluster (sometimes called

pg. 54

The X² MSCI Programmer's Handbook

the “Khaak thinker”).

[skip|else] if [not]|while [not]|<retvar>= <ship> -> get current
galaxy flight timestep in ms

The flight timestep is the number of milliseconds between updates in sectors that are not
rendered – that is, all the other sectors except for where the player's ship is located (often
referred to as “out-of-sector”). In sectors that are not being observed this is 30000. In sectors
that are being observed, it is 5000. This instruction returns the current flight timestep for the
sector that <ship> is in.

Note that while the value is only meaningful for out-of-sector ships, this instruction will return
a value of 30000 for in-sector ships. To determine if a ship is currently an in-sector or out-of-
sector ship, use the get sector object ID instruction.

[skip|else] if [not]|while [not]|<retvar>= <ship> -> is landing

Returns [TRUE] if <ship> is currently landing, [FALSE] if not. Landing means that it is on
“final approach” to a station, carrier, or gate.

[skip|else] if [not]|while [not]|<retvar>= <ship> -> is starting

Returns [TRUE] if <ship> is launching from a station or carrier, [FALSE] if not.

[skip|else] if [not]|while [not]|<retvar>= <ship> -> use
jumpdrive: target=<target>

Cause <ship> to use its jumpdrive (if available) to jump to <target>. The target must be a
sector or a gate. If it is a sector, then <ship> will jump into the very centre of the sector.

Returns [TRUE] on success, [FALSE] if a jump was not possible.

[skip|else] if [not]|while [not]|<retvar>= <ship> -> needed
jumpdrive energy for jump to sector <sector>

Returns the number of energy cells needed for a jump from the target ship's current sector to
<sector>. By setting <sector> equal to the ship's current sector, you can determine the amount
of energy needed per sector.

[skip|else] if [not]|while [not]|<retvar>= <ship> -> check,
select and fire missile on <target>

Checks to see if a missile should be fired at the target, based on the ship's missile fire
probability, and fires the missile if it should be. Essentially a combination of the should a

missile be fired and fire missile instructions.

Returns [TRUE] if a missile was fired, [FALSE] if not.

[skip|else] if [not]|while [not]|<retvar>= <object> -> add big
ship <bigship>

Places the specified big ship (M6, M2, M1, or TL) in dock with <object>. Returns [TRUE] on
success, [FALSE] on failure.

pg. 55

The X² MSCI Programmer's Handbook

[skip|else] if [not]|while [not]|<retvar>= <object> -> has a
free big ship dock slot

Returns [TRUE] if the object is capable of docking a large ship and has a free slot, [FALSE]
otherwise.

[skip|else] if [not]|while [not]|<retvar>= <object> -> can be
controlled by race logic

When a ship is created that doesn't belong to the player, the built-in game race logic for its
owner will take it over and control it after a few moments. This instruction determines whether
that internal race logic can do that for the given object, and whether or not it is enabled.

Returns [TRUE] if the game's race logic can take over the object, [FALSE] if not.

<object> -> set race logic control enabled to [TRUE]|[FALSE]

Allows a script to explicitly tell the game's race logic whether or not it is allowed to take
control of <object>. This is useful for AL plugins that create ships owned by other races, but
where the AL plugin keeps control of the ship.

[skip|else] if [not]|while [not]|<retvar>= <object> -> can
execute StartAction

An object's start action is the default command it has based only on its class. This is different
from the race control logic which is based on the object's class and race. This instruction
determines if the start action is enabled for the given object.

Returns [TRUE] if the start action is enabled, [FALSE] if not.

<object> -> set StartAction enabled to [TRUE]|[FALSE]

An object's start action is the default command it has based only on its class. This is different
from the race control logic which is based on the object's class and race. This instruction
allows a script to tell the game engine whether or not it is allowed to execute a ship's start
action. See Annex A.4 for a list of default start actions.

<ship> -> set as player wingman: [TRUE]|[FALSE]

Sets whether or not <ship> is a wingman for the player's ship.

[skip|else] if [not]|while [not]|<retvar>= <ship> -> is player
wingman

Returns [TRUE] if <ship> is a wingman for the player's ship, [FALSE] if not.

6.8 6.8 6.8 6.8 Trade Commands (for Ships)Trade Commands (for Ships)Trade Commands (for Ships)Trade Commands (for Ships)

[skip|else] if [not]|while [not]|<retvar>= <ship> -> buy <count>
units of <ware>

Purchases up <count> units of <ware> from the station <ship> is docked at. If there is not
enough room in the cargo hold for the entire purchase or if there aren't enough on the station,
then as many as possible will be purchased. If <ship> is owned by the player, money is
automatically deducted from the ship's home station if it has a home set, or from the player's
account if there is no home set.

pg. 56

The X² MSCI Programmer's Handbook

Returns the number of units actually purchased.

[skip|else] if [not]|while [not]|<retvar>= <ship> -> buy <count>
units of <ware> to a max price of <price> Cr

Purchases purchase up to <count> units of <ware> from the station <ship> is docked at, but
only if the ware's price is less than or equal to <price>. If there is not enough room in the cargo
hold for the entire purchase or if there aren't enough on the station, then as many as possible
will be purchased. If <ship> is owned by the player, money is automatically deducted from the
ship's home station if it has a home set, or from the player's account if there is no home set.

Returns the number of units actually purchased.

[skip|else] if [not]|while [not]|<retvar>= <ship> -> sell
<count> units of <ware>

Sells up to <count> units of <ware> to the station <ship> is docked at. If <count> is larger than
the amount on hand, then the entire amount on hand will be sold. If there isn't enough room on
the station, then as many as possible will be sold. If <ship> is owned by the player, money is
automatically added to the ship's home station if it has a home set, or to the player's account if
there is no home set.

Returns the number of units actually sold.

[skip|else] if [not]|while [not]|<retvar>= <ship> -> load
<count> units of <ware>

[skip|else] if [not]|while [not]|<retvar>= <ship> -> unload
<count> units of <ware>

Attempts to loads or unload <count> units of <ware> from or to the station that <ship> is
docked at. No money is added to or deducted for this transfer. The actual amount transferred
can be less than requested, depending on the amount of room on the ship/station, and the actual
number of units on hand to transfer.

Returns the number of units actually transferred.

<retvar>= <ship> -> get max. ware transport class

Returns the largest ware class that can be transported by <ship>.

[skip|else] if [not]|while [not]|<retvar>= <ship> -> get cargo
bay size

Returns the total cargo bay size for <ship>.

[skip|else] if [not]|while [not]|<retvar>= <ship> -> get free
volume of cargo bay

Returns the amount of free space in a ship's cargo bay.

[skip|else] if [not]|while [not]|<retvar>= <ship> -> get volume
of ware <ware> in cargo bay

Returns the total volume taken by <ware> in a ship's cargo bay.

pg. 57

The X² MSCI Programmer's Handbook

[skip|else] if [not]|while [not]|<retvar>= <ship> -> get true
volume of ware <ware> in cargo bay

Returns the total vole taken by <ware> in a ship's cargo bay, less any volume taken up by any
of <ware> that are currently installed as weapons or shields.

[skip|else] if [not]|while [not]|<retvar>= <ship> -> get free
volume of ware <ware> in cargo bay

Returns a ship's free capacity for more <ware> in its cargo bay. If the ware takes up more than
one unit of volume, then the returned number will be a multiple of that.

[skip|else] if [not]|while [not]|<retvar>= <ship> -> get total
volume in cargo bay

Returns the total used volume in a ship's cargo bay.

[skip|else] if [not]|while [not]|<retvar>= <ship> -> can
transport ware <ware>

Returns [TRUE] if a ship can transport <ware>, [FALSE] if not.

<ship> -> add default items to ship

Adds to a ship what the game has pre-set as its default equipment. This includes shields,
weapons, and munitions.

<ship> -> switch laser in turret <turretid> gun <gunid> to <gun>

Changes the weapon in the given slot of <turretid> to <gun>, assuming that the ship has one on
hand. Use zero for <turretid> to change a ship's main weapons.

<ship> -> set wanted ware count to <count>

This instruction will set the quantity of a ware that is displayed on the info screen when that
ship's command is set to COMMAND_GET_WARE or COMMAND_GET_WARE_BEST.

<ship> -> set wanted ware to <count>

This instruction will set the ware that is displayed on the info screen as being the ware a ship is
currently buying. The ship's command must first be set to either COMMAND_GET_WARE or
COMMAND_GET_WARE_BEST.

<retvar>= <ship> -> get wanted ware count

Returns the number set with a previous call to set wanted ware count.

<retvar>= <ship> -> get wanted ware

Returns the ware set with a previous call to set wanted ware.

[skip|else] if [not]|while [not]|<retvar>= <ship> -> has illegal
ware onboard: race=<race>

Returns [TRUE] of <ship> has a ware onboard that <race> considers illegal, [FALSE]
otherwise.

pg. 58

The X² MSCI Programmer's Handbook

6.9 Trade Commands (for Stations)

[skip|else] if [not]|while [not]|<retvar>= <station> -> get best
store amount of ware <ware>

[skip|else] if [not]|while [not]|<retvar>= <station> -> get max
store amount of ware <ware>

Returns the maximum amount of a ware that a dock (get best) or factory (get max) can hold.

[skip|else] if [not]|while [not]|<retvar>= <station> -> can buy
ware <ware>

[skip|else] if [not]|while [not]|<retvar>= <station> -> can sell
ware <ware>

Returns [TRUE] if the station can buy or sell <ware>, [FALSE] if not.

[skip|else] if [not]|while [not]|<retvar>= <station> -> get
price of ware <ware>

Returns the currently set price of <ware> on a station.

[skip|else] if [not]|while [not]|<retvar>= <station> -> get
average price of ware <ware>

Returns the current game setting for a ware's average price.

<station> -> set price of ware <ware> to <price> Cr

Sets the price that a station trades a ware at to <price> credits.

[skip|else] if [not]|while [not]|<retvar>= <station> -> uses
ware <ware> as primary resource

[skip|else] if [not]|while [not]|<retvar>= <station> -> uses
ware <ware> as secondary resource

Returns [TRUE] if <ware> is a primary or secondary resource on <station>, [FALSE] if not.

[skip|else] if [not]|while [not]|<retvar>= <station> -> trades
with ware <ware>

Returns [TRUE] if <ware> is traded at a station, [FALSE] if not.

[skip|else] if [not]|while [not]|<retvar>= <station> -> get
product ware

Returns the ware that a station produces as a product, or null of there is no product (in the case
of trade and equipment docks and shipyards).

[skip|else] if [not]|while [not]|<retvar>= <station> -> get
number of resources

[skip|else] if [not]|while [not]|<retvar>= <station> -> get
number of primary resources

[skip|else] if [not]|while [not]|<retvar>= <station> -> get
number of secondary resources

Returns the total number, the number of primary, or secondary resource wares on a station.

pg. 59

The X² MSCI Programmer's Handbook

This returns just the count, not a list of the wares themselves.

[skip|else] if [not]|while [not]|<retvar>= <station> -> get max
trade jumps

Returns the maximum number of jumps that a station's transport can travel to buy/sell wares.

[skip|else] if [not]|while [not]|<retvar>= <station> -> only
player owned ships can trade with

Returns [TRUE] if only player ships can trade with the given station, [FALSE] if not.

[skip|else] if [not]|while [not]|<retvar>= <station> -> get
tradeable ware array from station

Returns an array containing all wares that a station can trade. If the station has a product, it is
always first, followed by primary, then secondary resources.

6.10 6.10 6.10 6.10 Trade Commands (for Ships andTrade Commands (for Ships andTrade Commands (for Ships andTrade Commands (for Ships and
Stations)Stations)Stations)Stations)

[skip|else] if [not]|while [not]|<retvar>= <object> -> get money

Returns the amount of money that a station or a ship's owning station (depending what
<object> is) has on hand.

[skip|else] if [not]|while [not]|<retvar>= <object> -> add
money: <amount>

Adds <amount> to a station or a ship's owning station cash.

[skip|else] if [not]|while [not]|<retvar>= <object> -> get
amount of ware <ware> in cargo bay

Returns the amount (the actual quantity, not the volume) of a ware in an object's cargo bay.

[skip|else] if [not]|while [not]|<retvar>= <object> -> get true
amount of ware <ware> in cargo bay

Returns the amount (the actual quantity, not the volume) of a ware in an object's cargo bay less
any that are currently installed as shields or weapons.

[skip|else] if [not]|while [not]|<retvar>= <object> -> get free
amount of ware <ware> in cargo bay

Returns the amount (the actual quantity, not the volume) of a ware that can be added to an
object's cargo bay given the amount of cargo already in the bay.

[skip|else] if [not]|while [not]|<retvar>= <object> -> get max
amount of ware <ware> that can be stored in cargo bay

Returns the total amount of a ware that could be stored in the cargo bay. This is essentially
adding the results of get amount of ware in cargo bay and get free amount of ware in cargo
bay.

pg. 60

The X² MSCI Programmer's Handbook

6.11 6.11 6.11 6.11 Trade CommandsTrade CommandsTrade CommandsTrade Commands

[skip|else] if [not]|while [not]|<retvar>= get player money

Returns the amount of money the player has.

add money to player: <amount>

Adds <amount> to the player's money. Use a negative amount to subtract.

[skip|else] if [not]|while [not]|<retvar>= <object> -> add
<amount> units of <ware>

Adds the specified number of units of <ware> to the cargo hold on <object> as long as there is
room enough to hold it.

Returns [TRUE] on success, [FALSE] on failure.

[skip|else] if [not]|while [not]|<retvar>= <object> -> install
<amount> units of <ware>

Installs the specified number of units of <ware> on <object>. For example, if <ware> is a
shield, the shield will be installed in the object's shield bay. The ware is not added to the
object's cargo bay. This instruction can be used to add engine tunings, cargo bay extensions,
and rudder optimizations among other things.

Returns [TRUE] on success, [FALSE] on failure.

<retvar>= get volume of ware <ware>

Returns the amount of cargo space that one unit of <ware> occupies.

<retvar>= get transport class of ware <ware>

Returns the transport class of <ware>.

[skip|else] if [not]|while [not]|<retvar>= find station: product
<product> with best price: max.price=<price>,
amount=<amount>, max.jumps=<jumps>, startsector=<sector>,
trader=<trader>

... find station: product <product> with min. jumps ...

... find station: resource <product> with best price ...

... find station: resource <product> with min. jumps ...

... find station sells: resource <product> with best price ...

... find station sells: resource <product> with min. Jumps ...

These instructions are used to find stations that buy or sell wares. The “best price” instructions
prefer price over distance, the “min. jumps” instructions are the opposite. Finding a product
looks for stations selling a ware it produces – best price in this case means lowest. Finding a
resource looks for stations buying a ware – best price means highest here. Finally, “find
stations sells” is used for trading docks, which are a station that sells its resources. In this case,
“best price” also means lowest.

Returns the station on success, null on failure.

pg. 61

Tiny Containers

Small Containers S

Medium Containers M

Large Containers L

Extra Large Containers XL

Station Containers ST

Table 6.6 - Container
Transport Classes

The X² MSCI Programmer's Handbook

<retvar>= get average price of ware <ware>
<retvar>= get max. price of ware <ware>
<retvar>= get min. price of ware <ware>
<retvar>= get max. price of ware <ware> as secondary resource
<retvar>= get min. price of ware <ware> as secondary resource

Returns the average, minimum, or maximum price for <ware>. When a ware is a station's
secondary resource, the maximum and minimum prices are different, so there are separate
instructions for this case.

[skip|else] if [not]|while [not]|<retvar>= is ware <ware>
illegal in <race> sectors

Returns [TRUE] if the specified ware is illegal to transport in sectors owned by <race>,
[FALSE] if not.

<retvar>= get maintype of ware <ware>

Each ware belongs to a main and sub-category called maintype and subtype. This instruction
returns the specified ware's numerical maintype.

<retvar>= get subtype of ware <ware>

Each ware belongs to a main and sub-category called maintype and subtype. This instruction
returns the specified ware's numerical subtype.

<retvar>= get ware from maintype <maintype> and subtype
<subtype>

Each ware belongs to a main and sub-category called maintype and subtype. This instruction
takes a numerical maintype and subtype and returns the associated ware.

<retvar>= get number of subtypes of maintype <maintype>

Returns the number of subtypes in the given maintype ware category.

<retvar>= <object> -> get maintype

Every space object has an associated ware that could be considered to be the “type” of space
object it is. Also, every ware has a numerical main and sub category number called maintype
and subtype. This instruction looks at an object, and returns the numerical maintype of the
ware associated with it.

<retvar>= <object> -> get subtype

Every space object has an associated ware that could be considered to be the “type” of space
object it is. Also, every ware has a numerical main and sub category number called maintype
and subtype. This instruction looks at an object, and returns the numerical subtype of the ware
associated with it.

[skip|else] if [not]|while [not]|<retvar>= <object> -> find
station: product <product> with best price:
max.price=<price>, amount=<amount>, max.jumps=<jumps>,
startsector=<sector>, trader=<trader>

This series of commands is identical to the above find station: product with best price/min.

pg. 62

The X² MSCI Programmer's Handbook

jumps except for this series allows you to specify an object to calculate max. jumps from. The
previous series calculates max. jumps from the current location of <trader>.

6.12 6.12 6.12 6.12 General Object CommandsGeneral Object CommandsGeneral Object CommandsGeneral Object Commands

[skip|else] if [not]|while [not]|<retvar>= <object> -> get
object class

Returns the class of an object. See Annex A.5 for a breakdown of all the classes.

[skip|else] if [not]|while [not]|<retvar>= <object> -> get owner
race

Returns the race that owns <object>.

[skip|else] if [not]|while [not]|<retvar>= <object> -> get
environment

If <object> is docked then this instruction returns the station or carrier it is docked at, otherwise
it returns the sector the object is in.

[skip|else] if [not]|while [not]|<retvar>= <object> -> get
sector

Returns the sector that <object> is located in. If <object> is docked, it returns the sector that its
host is located in.

[skip|else] if [not]|while [not]|<retvar>= <ship> -> get
homebase

Returns the home base of <ship>, or null if there is none set.

[skip|else] if [not]|while [not]|<retvar>= <object> -> is of
class <class>

Returns [TRUE] if object belongs to the <class> or any if its children. If the player's current
ship is a Teladi Albatross, then both Test1 and Test2 will be true in the following example:

001 $Test1 = [PLAYERSHIP] -> is of class Ship
002 $Test2 = [PLAYERSHIP] -> is of class Big Ship

See Annex A.5 for a breakdown of all the classes.

[skip|else] if [not]|while [not]|<retvar>= <object> -> exists

Returns [TRUE] if <object> is a valid, existing in-game object. [FALSE] otherwise. This
should be used often inside scripts. Remember, the universe is dynamic – things get destroyed
all the time. Never assume that because at the beginning of your script a station existed that it
still exists in the middle or at the end.

[skip|else] if [not]|while [not]|<retvar>= <object> -> get ware
type code of object

Every space object has an associated ware that can be said to reflect the type of object it is.
This instruction returns the ware type associated with <object>.

pg. 63

The X² MSCI Programmer's Handbook

[skip|else] if [not]|while [not]|<retvar>= <station> -> get
serial name of station

The serial name of a station is the Greek letter associated with its name. Only non-player
stations have them. This instruction returns the serial name of <station>.

<station> -> set serial name of station <serial>

Sets the serial name of <station>. This will have no effect on any player-owned station.

[skip|else] if [not]|while [not]|<retvar>= find station in
galaxy: startsector=<sector> class or type=<type> race=<race>
flags=<flags> refobj=<object> serial=<serial>
maxjumps=<maxjumps>

Outside of trading scripts (where the find station: product, series of instructions are used most),
this is one of the most commonly used search instruction. The parameters in general are used to
restrict the scope of the search. Any of them, except for startsector and maxjumps can be null –
which leaves that part of the search unrestricted.

The class or type parameter can be any object class that is a child of “station” (see Annex A.5),
or it can be an explicit station type. The race parameter restricts the search to stations
belonging to a particular race or to the player. Flags is a special setting which allows you to
control the scope of the search in several ways. There are ten different flags that can be used
individually, or ORed together to form multiple parameters (see Annex A.6). The refobj
parameter is used to specify an object for use with the Find.Nearest flag. The serial parameter
restricts the search to alpha, beta, etc. stations. The maximum number of jumps that a station
can be from startsector is specified with the maxjumps parameter.

The requirement for the find station in galaxy to be given a valid start sector isn't as trivial as it
might sound. Remember, there is no guarantee that a player is using the built-in map supplied
with the game. This rules out using the get sector from universe instruction as that requires
using a stated X and Y, and that sector might not exist for some player maps. A common
method used is:

[PLAYERSHIP] -> get sector

This will succeed in getting the player's sector, but what if the player's ship doesn't exist yet
(such as in the beginning of the game before Ban Danna gives Julian a ship)? Also, the player's
ship might be in a Khaak sector. There are no jump gates out there, so using a Khaak sector as
the source might not work – the find station in galaxy instruction will fail if you are trying to
search for a random station that way. Keep these things in mind when you code so that your
code works in every situation.

[skip|else] if [not]|while [not]|<retvar>= <object> -> is of
type <type>

Returns [TRUE] if <object> is of the given type (either station or ship type), [FALSE]
otherwise.

[skip|else] if [not]|while [not]|<retvar>= get jumps from sector
<startsector> to sector <endsector>

Returns the number of jumps to get from one sector to another.

pg. 64

The X² MSCI Programmer's Handbook

[skip|else] if [not]|while [not]|<retvar>= get next sector on
route from sector <currentsector> to <endsector>

Returns the sector that is the next sector a ship needs to travel to in order to get to <endsector>.
There is no capacity for alternate routes, and the instruction does not respect undiscovered
sectors.

<ship> -> set homebase to <newhome>

Sets a ship's home base to a carrier or base.

[skip|else] if [not]|while [not]|<retvar>= <object> get current
shield strength

[skip|else] if [not]|while [not]|<retvar>= <object> get maximum
shield strength

Returns the current/maximum shield strength of <object>. This is an integer expressed in
kilowatts. The maximum is the megawatt value of all installed shields added together and
multiplied by 1000.

[skip|else] if [not]|while [not]|<retvar>= <ship> get current
laser strength

[skip|else] if [not]|while [not]|<retvar>= <ship> get maximum
laser strength

Each laser has a number representing the amount of energy it stores. Firing a shot from any
turret reduces the energy which is then restored at a certain rate. This instruction returns the
current/maximum laser strength of <object>. The maximum is the laser strength of all installed
lasers added together.

[skip|else] if [not]|while [not]|<retvar>= <ship> get max. laser
strength in turret <turret>

Returns the maximum laser strength for all the guns in one turret.

[skip|else] if [not]|while [not]|<retvar>= <object> get max.
shield type that can be installed

Returns the best shield that can be installed on <object>.

[skip|else] if [not]|while [not]|<retvar>= <object> get number
of shield bays

Returns the total number of shields that can be installed on <object>.

[skip|else] if [not]|while [not]|<retvar>= <ship> get number of
laser bays

Returns the total number of lasers that can be installed on <ship>.

[skip|else] if [not]|while [not]|<retvar>= <ship> get max.
missile type that can be installed

Returns the most powerful missile that <ship> can fire.

pg. 65

The X² MSCI Programmer's Handbook

[skip|else] if [not]|while [not]|<retvar>= <object> get relation
to object <subject>

Returns whether <subject> is friendly (owned by the same race), neutral (owned by a different
race but not an enemy), or enemy of <object>.

[skip|else] if [not]|while [not]|<retvar>= <object> get relation
to race <race>

Returns whether <race> is generally friendly, neutral, or enemies with the owner of <object>.

[skip|else] if [not]|while [not]|<retvar>= <object> get
notoriety to race <race>

Intended to return the integer value that represents how friendly (positive numbers) or
unfriendly (negative numbers) <race> is toward the owner of <object>. This instruction does
not work as intended – currently it always returns zero.

[skip|else] if [not]|while [not]|<retvar>= get notoriety from
race <onerace> to race <anotherrace>

Intended to return the integer value that represents how friendly (positive numbers) or
unfriendly (negative numbers) one race is toward another. This instruction does not work as
intended – currently it always returns zero.

[skip|else] if [not]|while [not]|<retvar>= <object> is <subject>
a enemy

[skip|else] if [not]|while [not]|<retvar>= <object> is <subject>
a friend

[skip|else] if [not]|while [not]|<retvar>= <object> is <subject>
neutral to me

Returns [TRUE] if the subject object is friendly/enemies/neutral toward <object>, [FALSE]
otherwise.

[skip|else] if [not]|while [not]|<retvar>= <object> get shield
type in bay <bay>

Returns the type of shield currently installed in an object's specified shield bay.

[skip|else] if [not]|while [not]|<retvar>= <ship> get laser type
in bay <bay>

Returns the laser that is currently installed in the specified bay of an object's main weapons
(turret zero).

[skip|else] if [not]|while [not]|<retvar>= <object> has same
environment as <subject>

Returns [TRUE] if <subject> is in the same environment as <object>. This means both are
either undocked in the same sector, or both are docked in the same station. Returns [FALSE]
otherwise.

pg. 66

The X² MSCI Programmer's Handbook

[skip|else] if [not]|while [not]|<retvar>= <object> is in same
sector as <subject>

Returns [TRUE] if <subject> is in the same sector as <object>, [FALSE] otherwise.

[skip|else] if [not]|while [not]|<retvar>= <ship> is landed

Returns [TRUE] if <object> is a small ship that is landed inside a carrier or station, [FALSE]
otherwise.

[skip|else] if [not]|while [not]|<retvar>= <ship> is docked

Returns [TRUE] if <object> is docked – this means either “landed inside” or “docked outside”.

[skip|else] if [not]|while [not]|<retvar>= <object> is docking
possible of <ship>

Returns [TRUE] if <ship> is physically able to dock with <object>, [FALSE] if not.

[skip|else] if [not]|while [not]|<retvar>= <ship> is docking
allowed at <target>

Returns [TRUE] if <target> will allow <ship> to dock with it. This doesn't mean that <target>
is physically capable of holding the ship, or that it has enough room to hold it.

[skip|else] if [not]|while [not]|<retvar>= <object> is in a
sector

Returns [TRUE] if <object> is not docked, [FALSE] if it is.

[skip|else] if [not]|while [not]|<retvar>= <object> get attacker

If <object> is being attacked, this instruction will return one of the attackers. Returns null
otherwise.

<object> -> set attacker to <attacker>

Informs the game engine that <attacker> is to be considered as attacking <object>. This also
occurs automatically when shots from an attacker hit an object.

<retvar>= get distance between <oneobject> and <anotherobject>

Returns the distance in metres between two objects, assuming they are in the same sector.

<retvar>= <object> -> get distance to: x=<x> y=<y> z=<z>

Returns the distance in metres between <object> and the specified coordinates.

<retvar>= <object> -> get distance to: position array=<position>

Returns the distance in metres between <object> and the coordinates stored in the array
<position>. The array should have three integer members in the order X, Y, Z.

<retvar>= <object> -> get distance: position array1=<position1>
position array2=<position2>

Returns the distance in metres between positions represented by two arrays. Each array should
have three integer members in the order X, Y, Z.

pg. 67

The X² MSCI Programmer's Handbook

<retvar>= create ship: type=<type> owner=<owner> addto=<target>
x=<x> y=<y> z=<z>

Creates a new ship in <target>. The target can be a sector, station, or carrier. If adding to a
station or carrier, the coordinates are ignored. Never add a big ship to a station this way – it
will end up landed internally inside the station.

Returns a “pointer” (a value that can be used in other <object> -> style instructions) to the
newly created ship on success, null on failure.

<retvar>= <object> -> get x position
<retvar>= <object> -> get y position
<retvar>= <object> -> get z position

Returns the X, Y, or Z coordinate of <object>.

<retvar>= <object> -> get position as array

Returns the position of <object> as an array of three integers in the order X, Y, Z.

<retvar>= get player ship

Returns the current player ship, or null if there isn't one (as there isn't at the beginning of a
standard game). This isn't used very often as it is generally more convenient to use the symbol
[PLAYERSHIP].

<object> -> set relation against <target> to <relation>

Changes the relation of <object> toward <target>. This may have to be done in both directions.

<retvar>= create station: type=<type> owner=<owner>
addto=<sector> x=<x> y=<y> z=<z>

Creates a new station and adds it to <sector> at the given coordinates. This does not add any
products or resources to the station – that has to be performed separately.

Returns a “pointer” (a value that can be used in other <object> -> style instructions) to the
newly created station on success, null on failure.

<retvar>= create gate: type=<type> addto=<sector> gateid=<id>
dstsecx=<sectorx> dstsecy=<sectory> dstgateid=<linkto> x=<x>
y=<y> z=<z>

Creates a gate and links it to a gate in another sector. The type represents whether it leads
North (0), South (1), West (2), or East (3). The gateid is an integer that simply uniquely
identifies the gate within a sector – each gate in a sector must have a different one. It is this id
number that links gates together. To determine the target sector, specify its X and Y
coordinates on the map in dstsecx and dstsecy. Which gate within that sector the new gate will
deposit a ship at is specified with dstgateid. Generally for all built-in gates, the type and gateid
are the same. Finally, the location coordinates of where the gate is within its sector are
specified in X, Y, Z format.

Returns a “pointer” (a value that can be used in other <object> -> style instructions) to the
newly created gate on success, null on failure.

pg. 68

The X² MSCI Programmer's Handbook

<retvar>= create asteroid: type=<type> addto=<sector>
resource=<resource> yield=<yield> x=<x> y=<y> z=<z>

Creates a new asteroid at a given set of coordinates within a sector . Type specifies the style of
asteroid (see Annex A.7). The resource specifies whether the asteroid contains ore (0), silicon
(1), or nividium (2).

<station> -> add product to factory or dock: <ware>
<station> -> add primary resource factory or dock: <ware>
<station> -> add secondary resource factory or dock: <ware>
<station> -> remove product from factory or dock: <ware>
<station> -> remove primary resource from factory or dock:

<ware>
<station> -> remove secondary resource from factory or dock:

<ware>

Adds or removes <ware> as a product/primary/secondary resource of <station>. No built-in
stations have multiple products, however the game supports having them. No player-owned
factory uses secondary resources but, again, the game supports it.

<retvar>= create nebula: type=<type> addto=<sector> x=<x> y=<y>
z=<z>

Creates a nebula and adds it to <sector>. There are 13 different types of nebula that can be
produced with this instruction. See Annex A.8 for a list.

<retvar>= create sun: subtype=<subtype>
r=<red> g=<green> b=<blue> addto=<sector> x=<x>
y=<y> z=<z>

Creates a sun and adds it to <sector>. Suns are unique in that they do not appear to get smaller
or larger depending on how far your ship is from them. Thus, the placement in the sector can
be anywhere to give the best lighting effect without having to worry about how large it appears.

The r, g, and b parameters specify the amount of red, green and blue light the sun gives off.
This does not control the colour of the sun itself, just the light it adds to the sector.

There are 25 subtypes in all – see Annex A.9 for a list.

<retvar>= create planet: subtype=<subtype> addto=<sector> x=<x>
y=<y> z=<z>

Creates a planet and adds it to <sector>. In this case, planet means “a solar body that has a
spherical 3d model”, since two planets are actually used as suns.

There are 17 subtypes – see Annex A.10 for a list.

<retvar>= create special: type=<type>
addto=<sector> x=<x> y=<y> z=<z>

This instruction can produce a whole melting pot of different items. From a working gravidar
hanging in space, to the wreckage of stations and ships.

There are 74 types that can be created. See Annex A.11 for a list.

pg. 69

WARNING :

Creating suns of subtype 23
has been known to cause

crashes-to-desktop. Avoid
this subtype.

WARNING :

Using a type > 73 has been
known to cause crashes-to-

desktop.

The X² MSCI Programmer's Handbook

[skip|else] if [not]|while [not]|<retvar>= find ship:
sector=<sector> class or type=<classtype> race=<race>
flags=<flags> refobj=<refobj> maxdist=<maxdist>
maxnum=<maxnum> refpos=<position>

One of the five general purpose search instructions, this one is used to find ships in the given
sector.

Set <classtype> equal to any class that is a child of Ship (see Annex A.5), a specific ship type,
or null to have no restriction based on the class or type of ship. Set <race> to restrict the search
to ships owned by that race, or to null for no restriction. The flags parameter is a special setting
which allows you to control the scope of the search in several ways. There are ten different
flags that can be used individually, or ORed together to form multiple parameters (see Annex
A.6). Set <refobj> to be a space object if you wish to search for ships based on their proximity
to something. Use the maxdist parameter to specify how far from <refobj> or <refpos> the
searched-for ships can be. If you use the [Find.Multiple] flag, then <maxnum> is the
maximum number of ships that the instruction will return in its return array. The refpos
parameter is used in conjunction with maxdist to search for ships that are within a certain
distance of a point in the sector. If it is set, it needs to be a position array – an array of three
integers in the order X, Y, Z. This instruction should not set both <refobj> and <refpos>.

Returns either a single ship or an array of ships on success, null on failure.

[skip|else] if [not]|while [not]|<retvar>= find asteroid:
sector=<sector> resourcetype=<resource> min. yield=<yield>
flags=<flags> refobj=<refobj> maxdist=<maxdist>
maxnum=<maxnum> refpos=<position>

One of the five general purpose search instruction, this instruction finds asteroids within a
sector.

Set <resource> to 0 to search for asteroids with ore, 1 for silicon, 2 for nividium, or null for no
restriction on the resource. Set <yield> to the minimum yield of an asteroid that the search can
return, or null for no restriction. The flags parameter is a special setting which allows you to
control the scope of the search in several ways. There are ten different flags that can be used
individually, or ORed together to form multiple parameters (see Annex A.6). Set <refobj> to
be a space object if you wish to search for asteroids based on their proximity to something. Use
the maxdist parameter to specify how far from <refobj> or <refpos> the searched-for asteroids
can be. If you use the [Find.Multiple] flag, then <maxnum> is the maximum number of
asteroids that the instruction will return in its return array. The refpos parameter is used in
conjunction with maxdist to search for asteroids that are within a certain distance of a point in
the sector. If it is set, it needs to be a position array – an array of three integers in the order X,
Y, Z. This instruction should not set both <refobj> and <refpos>.

Returns either a single asteroid or an array of them on success, null on failure.

[skip|else] if [not]|while [not]|<retvar>= find flying ware:
sector=<sector> maintype=<maintype> subtype=<subtype>
flags=<flags> refobj=<refobj> maxdist=<maxdist>
maxnum=<maxnum> refpos=<position>

One of the five general purpose search instruction, this instruction finds flying wares within a
sector. A flying ware is a ware that has been ejected into space, or left behind when a ship is
destroyed.

All the game wares are organized into several groups called maintypes and their position within

pg. 70

The X² MSCI Programmer's Handbook

that group is their subtype. Set either or both the <maintype> and <subtype> parameters to
restrict the search accordingly13. The flags parameter is a special setting which allows you to
control the scope of the search in several ways. There are ten different flags that can be used
individually, or ORed together to form multiple parameters (see Annex A.6). Set <refobj> to
be a space object if you wish to search for flying wares based on their proximity to something.
Use the maxdist parameter to specify how far from <refobj> or <refpos> the searched-for
flying wares can be. If you use the [Find.Multiple] flag, then <maxnum> is the maximum
number of flying wares that the instruction will return in its return array. The refpos parameter
is used in conjunction with maxdist to search for flying wares that are within a certain distance
of a point in the sector. If it is set, it needs to be a position array – an array of three integers in
the order X, Y, Z. This instruction should not set both <refobj> and <refpos>.

[skip|else] if [not]|while [not]|<retvar>= find station:
sector=<sector> class or type=<classtype> race=<race>
flags=<flags> refobj=<refobj> maxdist=<maxdist>
maxnum=<maxnum> refpos=<position>

One of the five general purpose search instructions, this one is used to find stations in the given
sector. This is different from the find station in galaxy instruction, which is able to find a
station across multiple sectors. Also, the find station in galaxy instruction cannot use the
[Find.Multiple] flag, whereas this instruction can.

Set <classtype> equal to any class that is a child of Station (see Annex A.5), a specific station
type, or null to have no restriction based on the class or type of station. Set <race> to restrict
the search to stations owned by that race, or to null for no restriction. The flags parameter is a
special setting which allows you to control the scope of the search in several ways. There are
ten different flags that can be used individually, or ORed together to form multiple parameters
(see Annex A.6). Set <refobj> to be a space object if you wish to search for ships based on
their proximity to something. Use the maxdist parameter to specify how far from <refobj> or
<refpos> the searched-for ships can be. If you use the [Find.Multiple] flag, then <maxnum> is
the maximum number of stations that the instruction will return in its return array. The refpos
parameter is used in conjunction with maxdist to search for stations that are within a certain
distance of a point in the sector. If it is set, it needs to be a position array – an array of three
integers in the order X, Y, Z. This instruction should not set both <refobj> and <refpos>.

Returns either a single station or an array of stations on success, null on failure.

[skip|else] if [not]|while [not]|<retvar>= <object> -> is
disabled

At one point there was a plan to incorporate missiles that disabled a ship. Currently this
instruction is not used.

<object> -> station trade and production tasks: on=[TRUE]|
[FALSE]

Stations that are created using the create station instruction are created “turned off”. This is to
give the script time to set the station's product and resources. This instruction can then be used
to turn on the station.

13 A comprehensive list of all wares along with their main and sub types is beyond the scope of this manual. However, it is
not difficult to get this information as needed with a little script experimenting.

pg. 71

The X² MSCI Programmer's Handbook

[skip|else] if [not]|while [not]|<retvar>= <object> -> get
SectorObject ID

Returns the Sector Object ID of the given space object. This instruction can be used in a script
to determine if the sector a ship is in is currently “rendered” (the sector where the player ship is
located), since only “in-sector” space objects have a SectorObject ID.

[skip|else] if [not]|while [not]|<retvar>= <object> -> get ware
type of SectorObject <sectorobject>

Returns the ware type of the object linked to the given SectorObject.

[skip|else] if [not]|while
[not]|<retvar>= <object> ->
exists SectorObject
<sectorobject>

Returns [TRUE] if the given SectorObject
exists, [FALSE] otherwise.

[skip|else] if [not]|while
[not]|<retvar>= <object> ->
get object from SectorObject
<sectorobject>

Returns the normal “pointer” to an object
based on its SectorObjectID on success, null
on failure.

<object> -> destruct: show no
explosion=[TRUE]|[FALSE]

Destroys <object>, either with an explosion or silently.

<object> -> set position: x=<x> y=<y> z=<z>

Moves <object> to the position specified by the given coordinates. No checking is done on
whether or not something is already in that location.

<object> -> set rotation: alpha=<alpha> beta=<beta>
gamma=<gamma>

Sets the direction an object is pointing. Alpha is the heading, beta is the elevation, and gamma
is its rotation around its Z axis. All angles are expressed as sixteen bit integers with 65536
“degrees” in a circle.

set position of sector object <sectorobject>: x=<x> y=<y> z=<z>

Identical to set position, except that this instruction operations on a SectorObject.

set safe position of sector object <sectorobject>: x=<x> y=<y>
z=<z>

Whereas set position does no checking on whether something is already sitting at the target
location, this instruction ensures that the object is moved safely. If the target location has
something there already, then the game engine will shift the actual location where the object is

pg. 72

Technical Tidbit

As most everyone knows, only the sector that a player
is currently in is actually “rendered”. Every object in a
sector that is rendered, including the sector itself, has
what is called a “SectorObject”. This is, simply, the
visual part of an object – it's model.

When a sector is rendered, each object in the sector is
given a “SectorObject” in turn, starting with the sector
itself which is usually followed by the sector's sun,
nebulae, then stations, ships, and asteroids. The “Sector
Object ID” is an integer that starts at one for the first
object rendered in the first sector entered after a new
game is started or loaded, and increases by one for
every new one created. When a ship enters the
rendered sector, a new SectorObject with a unique ID is
created. When it leaves, it is destroyed. Objects which
normally can't be searched for, like suns and nebulae,
with some work can be found by going through all the
SectorObject IDs in a sector. It's tricky, but possible.

The X² MSCI Programmer's Handbook

moved to.

set rotation of sector object <sectorobject>: alpha=<alpha>
beta=<beta> gamma=<gamma>

Identical to set rotation, except that this instruction operations on a SectorObject.

<retvar>= create sector object:
maintype=<maintype> subtype=<subtype>

Allocates a new SectorObject. The model is loaded, but it is not displayed in a
sector until start sector object is called. Be advised that creating and freeing sector objects is
playing around with the game engine at a very low level. It is much more advisable to create
ship and destruct directly.

Returns the ID of the new SectorObject on success, null on failure.

free sector object <sectorobject>

Deallocates <sectorobject>. Do not do this unless your script has allocated the sector object
itself in the first place, or you will remove the model from the sector, but the game engine will
think the actual space object is still in the sector. Be advised that creating and freeing sector
objects is playing around with the game engine at a very low level. It is much more advisable
to create ship and destruct directly.

kill sector object <victim>: reason <reason>,
killer sector object <killer>

Informs the game engine that one sector object has killed another for the
specified reason. Be advised that dealing directly with sector objects is
playing around with the game engine at a very low level. It is much more
advisable to use destruct directly.

start sector object <sectorobject> in space <sectorid>

Places a previously allocated sector object in space. In this instruction, <sector> is the
SectorObject ID of the sector. Be advised that creating and freeing sector objects is playing
around with the game engine at a very low level. It is much more advisable to create ship and
destruct directly.

<retvar>= create flying ware: maintype=<maintype>
subtype=<subtype> count=<count> sector=<sector> x=<x> y=<y>
z=<z>

Creates a new flying ware (see find flying ware for more information) of the given main and
sub type and adds it to <sector> at the given coordinates.

Returns a “pointer” (a value that can be used in other <object> -> style instructions) to the
newly created flying ware on success, null on failure.

<retvar>= <object> -> get rot alpha
<retvar>= <object> -> get rot beta
<retvar>= <object> -> get rot gamma

Returns an object's current orientation. Alpha is the heading, beta the elevating, and gamma the
rotation around the Z axis. All angles are expressed as sixteen bit integers with 65536

pg. 73

Shot by laser 2

Collision 3

Hit by missile 5

Table 6.7 - Kill Reasons

 Using Sector Objects is
dangerous, and has almost no
benefit. It is a very good way

to never get your scripts
signed, and also to damage

your save game.

The X² MSCI Programmer's Handbook

“degrees” in a circle.

<retvar>= <object> -> get size of object

Returns the size of an object. This is the radius of the object's bounding sphere (a sphere that
would encompass the object) multiplied by 222.

<retvar>= <object> -> get max upgrades for upgrade <ware>

Returns the maximum number of upgrades of the given ware that can be installed on <object>.

<retvar>= <object> -> get max speed

Returns the maximum speed of an object in metres per second.

<retvar>= <object> -> get max hull

Returns the maximum hull strength for <object>.

<retvar>= <object> -> get hull

Returns the current hull strength for <object> taking into account any damage it has suffered.

<retvar>= <object> -> get hull percent

Returns the current strength of an object's hull expressed as a percentage of its maximum
strength.

<retvar>= <object> -> get shield percent

Returns the current strength of an object's shields expressed as a percentage of its maximum
strength.

<retvar>= <object> -> get shield and hull percent

Returns as a two-entry array the current strength of an object's shields and hull expressed as a
percentage of its maximum strength.

<retvar>= <ship> -> get max upgraded speed

Returns the maximum speed that a ship can travel at if it has full engine tunings installed.

<retvar>= <object> -> get dock bay size

Returns the maximum number of ships that can land on <object>. For a station this is one
million.

<retvar>= <object> -> get number of landed ships

Returns the number of ships landed on <object>.

player loses police license for race <race>

Causes the player to lose the police license for the given race.

<race> -> add notoriety: race=<subject> value=<value>

Adds the given amount of notoriety toward <subject> race to <race>.

pg. 74

The X² MSCI Programmer's Handbook

<object> -> set ship disabled to [TRUE]|[FALSE]

Not used.

<object> -> put into environment <environment>

Moves <object> into the specified environment. This can be a sector or a base. This is useful
for moving a ship to a base without the fuss of having it dock. Don't try this with a big ship.

<station> -> station send defend squad against ship <target>

Causes <station> to launch fighters with orders to attack <target>.

<retvar>= <object> -> get name

Returns the name of <object>.

<retvar>= <object> -> set name to <name>

Changes the name of <object> to <name>.

<retvar>= <object> -> set owner race to <race>

Changes the ownership of object so that it belongs to <race>.

[skip|else] if [not]|while [not]|<retvar>= <object> -> find
ship: sector=<sector> class or type=<classtype> race=<race>
flags=<flags> refobj=<refobj> maxdist=<maxdist>
maxnum=<maxnum> with homebase=<homebase>

A second variant of find ship that allows a ship's home base to be used as a search criteria.

[skip|else] if [not]|while [not]|<retvar>= find station in
galaxy: startsector=<sector> class or type=<type> race=<race>
flags=<flags> refobj=<object> serial=<serial>
maxjumps=<maxjumps> num=<count>

A second variant of find station in galaxy that will return multiple stations.

<retvar>= <object> -> get id code

Returns the ID code of the given object (YM2XL-21, for example, is a possible ID code for a
player-owned M2).

<retvar>= <ship> -> get pilot name

Returns the name of the given ship's pilot. For player ships, this will most frequently be the
player's currently set name.

<retvar>= <ship> -> set pilot name to <name>

Changes the name of the given ship's pilot. This will not change the player's name if used on a
player-owned ship.

<ship> -> set pilot speaker: voice=<voice>, face=<face>, Pirate
subrace=[TRUE]|[FALSE], Argon female=[TRUE]|[FALSE]

There are five different voices and faces for each race. This instruction allows a script to set

pg. 75

The X² MSCI Programmer's Handbook

the specific voice and face associated with a ship's pilot. Both <voice> and <face> are integers.

6.13 6.13 6.13 6.13 Universe and Sector CommandsUniverse and Sector CommandsUniverse and Sector CommandsUniverse and Sector Commands

[skip|else] if [not]|while [not]|<retvar>= get sector from
universe index: x=<x>, y=<y>

Returns the sector in the universe found at the grid location specified. Kingdom End is 0,0.
Portable scripts shouldn't depend on a particular sector being at the location it is on the built-in
game map. Different maps can be used.

<retvar>= get max sectors in x direction
<retvar>= get max sectors in y direction

Gets the X or Y size of the map, often as a prelude to iterating through all the sectors.

[skip|else] if [not]|while [not]|<retvar>= <sector> -> is sector
known by the player

Returns [TRUE] if the player has discovered <sector>, [FALSE] otherwise.

<retvar>= <sector> -> get universe x index
<retvar>= <sector> -> get universe y index

Returns the X or Y index of the given sector.

<retvar>= <sector> -> get warp gate: gate id=<gate>

Finds and returns the warp gate of a given ID in a sector. For all warp gates in the default map,
the ID corresponds with the direction the gate “travels”. North is 0, South is 1, East is 2, West
is 3.

<retvar>= <sector> -> get north warp gate
<retvar>= <sector> -> get south warp gate
<retvar>= <sector> -> get east warp gate
<retvar>= <sector> -> get west warp gate

Returns the warp gate from <sector> that goes in the given direction, or null if there isn't one.

<retvar>= find random sector: startsector=<sector>,
jumps=<maxjumps>, owner=<owner>

Returns a sector at random from the map that is within <maxjumps> of <sector>. Owner can
be null, but the startsector parameter must be a valid sector.

<retvar>= <object> -> get ship array from sector/ship/station

Returns an array of all ships that are in the target ship/station/sector.

<retvar>= <sector> -> get station array from sector
<retvar>= <sector> -> get factory array from sector
<retvar>= <sector> -> get dock array from sector

Returns all stations/factories/docks in the target sector. A station can be any base, factory is
any factory or shipyard, dock is any dock.

pg. 76

The X² MSCI Programmer's Handbook

<retvar>= <sector> -> get player owned ship array from sector
<retvar>= <sector> -> get player owned station array from sector

Returns all player-owned ships or stations in <sector>

<retvar>= <sector> -> get asteroid array from sector

Returns all asteroids located in <sector>.

pg. 77

The X² MSCI Programmer's Handbook

7.7.7.7.Advanced TopicsAdvanced TopicsAdvanced TopicsAdvanced Topics

7.1 7.1 7.1 7.1 Processes and TasksProcesses and TasksProcesses and TasksProcesses and Tasks

The purpose of writing scripts is to add functionality to the game. This would be pretty
difficult if only one script could run at a time. After all, the whole idea is to have scripts doing
all sorts of interesting things all at the same time – fighting, monitoring, trading, performing
missions. With many hundreds of ships running thousands of scripts, this can't be a haphazard
affair. There needs to be organization. The way X² organizes them is into separate processes
and tasks.

Every script that runs, runs inside its own “virtual” computer called a process. Every process
that runs is assigned “process ID” – a number that is different from any other process running.
The process ID starts at zero for the very first process that ever ran in your current X² game,
and increments by one for every new process. The maximum is 4294967296, after which it
wraps back to zero (though unless you play one game for several years, this is unlikely to
happen).

If you go into the scripting command screen (Bc then s), you will see an entry at the

bottom of the menu labelled “Global Script Tasks” (this should have been labelled “global
script processes). If you select this, you will see a list of all the currently running global
processes – processes that aren't attached to any particular ship, station, or object – along with
their associated process IDs.

Process IDs are great for the game to use for organizing all the thousands of scripts that get run,
but they are ungainly for humans to use in scripts. In order to simplify things for people
writing scripts, there is also the concept of a “task”.

A task is simply a process that is attached to an object. Different tasks are used to make an
object do more than one thing at once. For example, the Argon One has a task that runs the
main patrol script, and another task that runs scripts that control each of its turrets.

To further simplify matters, tasks were organized into the role they serve. The following chart
lists all the tasks with predefined roles:

Task # Task Role (ships) Task Role (stations)

0 Main task – the ship's overall task Main task – usually “idle”

1 Task for turret 1

2 Task for turret 2

3 Task for turret 3

4 Task for turret 4

5 Task for turret 5

6 Task for turret 6

10 First “Additional Ship Commands” task Station Commands slot 1 task

11 Second “Additional Ship Commands” task Station Commands slot 2 task

12 Station Commands slot 3 task

13 Station Commands slot 4 task

14 Station Commands slot 5 task

15 Station Commands slot 6 task

pg. 78

The X² MSCI Programmer's Handbook

Task # Task Role (ships) Task Role (stations)

16 Station Commands slot 7 task

17 Station Commands slot 8 task

18 Station Commands slot 9 task

19 Station Commands slot 10 task

Table 7.1 - Task roles for ships and stations

Any time you issue an order to a ship through the “Navigation”, “Combat”, “Trade”, or
“Special” menus, that command starts a process and attaches that process to task zero on the
ship you give the order for. Any time you give an order to turret 3, for example, the process
that runs that script is attached to task 3 on the target ship.

This linkage between certain task IDs and certain roles also holds true for tasks that are started
independent of menu commands. For example, consider the following two simple scripts:

TestCommand:

001 [PLAYERSHIP] -> start task 10 with script TestTask and prio 0:
arg1= null arg2= null arg3= null arg4= null arg5= null

002 return null

TestTask:

001 set script command: COMMAND_ACTION
002 @ wait 120000 ms
002 return null

TestCommand, when run, starts up task number 10 on the current player ship. When TestTask
is started, even though it isn't started through the command menus, the result of the set script

command
statement in line 1
still displays on the
“Additional Ship
Commands” menu.

Any task that is started on a ship or a station, then, and that is given a task ID that is one of
those listed in Table 6.1 is assumed by the X² scripting system to be associated with one of
those roles. This doesn't mean you are limited to only those tasks. There may be times when
you want to have a script running as a separate task simply so that it is running at the same time
as other tasks. In this case you probably don't want to have it associated with one of the built-
in roles. In this case, simply use a task number that isn't associated with any role. To allow for
future expansion – extra roles that Egosoft may add later – you may wish to use higher
numbers. It's probably a sure bet that it's safe to use task IDs higher than 100.

7.2 7.2 7.2 7.2 Concurrency, Interrupts, andConcurrency, Interrupts, andConcurrency, Interrupts, andConcurrency, Interrupts, and
Atomic OperationsAtomic OperationsAtomic OperationsAtomic Operations

Concurrency

As many script writers find out early in their career, one of the easiest ways to lock up X² is by
making an infinite loop. The following is a very simple script that, if run, will cause your game

pg. 79

Illustration 7.1 COMMAND_ACTION displayed on "Additional Ship Commands" menu

The X² MSCI Programmer's Handbook

to hang:

TestLockup :
001 while [TRUE]
002 end

A very simple script – nut just as deadly as it is simple.

The way that thousands of scripts all run at the same time is called “concurrency” - multiple
scripts running concurrently with each other. To a player it might seem (and hopefully it does
seem) that they are truly all running at the same time. This isn't the case – and the answer to
why the above script locks up X² is the answer to how X² achieves concurrency.

Because all the ships in the game are simulated, and the shipboard computers are simply
pretend computers, all the thousands of scripts that run in the game are actually run on one
computer – yours. There is only one computer for all those scripts, so how does X² run them
all at the same time? The answer is that it doesn't. It runs a little piece of script from one
process, then switches to another process, and another, and so on in a round robin scheme.
This is very similar to the way that your operating system can seem to run more than one
program at once. This is important to remember – in X² there is only ever one script actually
running at a time.

X² uses a type of process switching called “cooperative multitasking”14. Under this scheme, a
script that is running stays running until it voluntarily cedes control to another script. This is
done at special instructions that act as interrupt points. Script instructions which are interrupt
points are marked by the “@” symbol in front of them. The most common ones are wait and
call script. The scheme is called cooperative multitasking because all the scripts must cooperate
in order to run effectively. If any one script refuses to give up control, then no other script can
run.

You will of course notice that there are no interrupt points in the TestLockup script. This is
why the script will cause the game to freeze – no other script can possibly run because our little
script simply isn't cooperating. The script engine itself is so busy running that tiny little loop,
that nothing else in the game can occur. Hence the freeze. Just one simple change to the script
would keep it from locking up the game:

TestLockupFix :
001 while [TRUE]
003 @ wait 10 ms
002 end

With the inclusion of an interrupt point, the little script will now no longer cause the game to
freeze, though it will still run forever (so don't save your game if you actually try it).

This is very important to remember – once your script is running, it will stay running at least
until it reaches an interrupt point. Without an interrupt point, X²'s multitasking system cannot
switch processes to give run time to any other script.

Interrupts

Something else that can happen at an interrupt point besides multitasking is an actual interrupt.
An interrupt occurs either when some script uses an interrupt instruction, or when a signal
(more on this in a bit) is received by the object your script is running on.

An interrupt is the way something else – either the game engine or another script – gives the
object your script is running on a new command without replacing the old command. A
common example of this is when you have several ships following you, and you use the

14 See: http://en.wikipedia.org/wiki/Co-operative_multitasking

pg. 80

The X² MSCI Programmer's Handbook

command menu to tell your ship to jump to a new sector. When that happens, the ships that are
following you jump with you (if they have jump drives and enough energy cells). Those ships
could have been following you for one of several reasons. For example, they could have been
given a “follow” command, or a “protect me” command. When you execute the command
“jump to sector” and that command tells the ships following you to jump too, you don't want
those ships to forget what they were doing when they arrive in the new sector. You want them
to keep following you or protecting you. Here is the code from “!move.jump.xml” (the script
that actually handles the “jump to sector” command) that tells your followers to jump too:

017 if $withfollowers
018 $afollowers = [THIS] -> get formation follower ships
019 if $afollowers
020 $s = size of array $afollowers
021 while $s > 0
022 dec $s =
023 $ship = $afollowers [$s]
024 $ship -> interrupt with script ' !ship.signal.leaderjumps ' and

prio 0: arg1= [THIS] arg2= $target arg3= $withfollowers arg4= null
025 end
026 end
027 end

Line 24 is what we are interested in. This is how the ships that are following you jump with
you but don't forget what they were doing before. Whatever commands they are running are
interrupted with a new script.

When the following ships' scripts reach an interrupt point, it is like it is forced to execute a call
script instruction. The new script runs as if it were called by the old script. The new script
performs its function, and when it executes a return instruction, the old script resumes running
where it left off. It doesn't even know it was interrupted.

Signals

As mentioned earlier, another way to interrupt a ship is with a signal. A signal is a predefined
interrupt that occurs when certain game conditions are met, the most common one being when
a ship is attacked. There are actually seven different types of signals, and each of them has a
defined script that is associated with them:

Signal Name Occurs when... Associated Script15

SIGNAL_ATTACKED A ship is attacked !ship.signal.attacked

SIGNAL_COLLISIONWARN A ship is in danger of colliding with
something.

No default handler script

SIGNAL_LEADERNEEDSHELP A follower is in a formation and the
leader is attacked

!ship.signal.leaderneedshelp

SIGNAL_FOLLOWERNEEDSHELP The leader is in a formation and a
follower is attacked

!ship.signal.followerneedshelp

SIGNAL_FORMATIONLEADERCHANGEDThe leader of a formation is changed
(because the old leader was killed,
for example) this signal is sent to the
rest of the ships in that formation.

!ship.signal.formationleaderchg

SIGNAL_CAPTURED A ship is captured !ship.signal.captures

SIGNAL_KILLED A ship is killed !ship.signal.killed

Table 7.2 – Signals and their handler scripts

15 The most common associated script is listed. Different classes of ships can (and do) have their own different scripts
attached as the signal handler for a signal.

pg. 81

The X² MSCI Programmer's Handbook

So, what exactly must occur to trigger a signal script to run? First, the signal's handler script is
associated with a signal. For example (from the init script !init.ship.globalscriptmap.std.xml):

072 global script map: set: key= SIGNAL_ATTACKED, class= Ship ,
race= $race , script=' !ship.signal.attacked ', prio= 100

Once the signal handler script is associated with a signal, then all that needs to happen is the
signal's condition needs to be met. In the case of the above example, when a ship is attacked.
As an example, imagine flying around in an Argon Buster and chancing upon a Pirate Ship.
That pirate ship is most likely running a “buy ware for best price” command for the pirate base
that owns it. Assuming you're not a pirate sympathizer, you fire on it.

The moment that your first shot hits the pirate ship, the game recognizes that a signal condition
has been met. Whatever script the pirate ship was running is now automatically sent an
interrupt. When that script reached an interrupt point, as before it is as if it is forced to execute
a call script instruction and the signal's handler (the !ship.signal.attacked) script now begins to
run.

Now, suppose the pirate launches a Hornet at you and you, deciding that discretion is the better
part of valour, bug out. Eventually the pirate will go back to what it was doing before. Just
like with the interrupt, when the combat script terminates, it returns control back to whatever
was running before the signal was sent.

As described above, every time your script reaches an instruction that is an interrupt point, the
scripting engine checks for two conditions. Is there another script that is trying to interrupt this
one (through an interrupt or signal), and is there another script that is waiting to run.

Remember, there are thousands of scripts and only one is ever actually “running” at any one
time. Even if there isn't another script that is trying to interrupt yours, you can be sure that
there is probably another script that is waiting to run.

There are times, however, when you need to make sure another script doesn't run. At least not
yet.

Atomic Operations

Consider the following scenario. You are writing an advanced script to run your turrets and the
design for this script calls for charging the player money for the turrets to be able to run. You
want the turrets to shut down if the player runs out of money, and to send a message to the
player. The catch is, of course, that there are up to six turrets on any one ship, and you don't
want the player to get sent six messages. So you want to write some code that ensures that no
matter how many turrets are running, only one turret sends the message, but they all stop
running. Some code that can accomplish this is as follows:

100 if <player doesn't have enough money>
101 if not [THIS] -> get local variable: name= 'turret.mutex'
102 [THIS] -> set local variable: name= 'turret.mutex' value= [TRUE]
103 write to player logbook 'Bad player – you ran out of money. All of

your turrets are shutting down'
104 @ wait 10000 ms
105 [THIS] -> set local variable: name= 'turret.mutex' value= [FALSE]
106 end
107 return null
108 end

The concept above is pretty simple. A local variable is used as a lock. The first turret that
happens to run this code will check to see if the local variable turret.mutex is set. It won't be
set, so it goes on to line 102 which sets it. After that, you can be sure that none of the other
turrets that are running the same script can get past line 101. They will check to see if the local

pg. 82

The X² MSCI Programmer's Handbook

variable is set, and when they see that it is set, they will continue on to line 107 where they will
exit.

The reason why this works is because lines 101 and 102 are an atomic operation. There is no
interrupt point in between the line that checks to see if the local variable is set and the line that
sets it. To any other script that is running, both these operations appear to happen at the same
time. This is what is meant by atomic.

The wait instruction at line 104 is also very important, because what we now need to do is
make sure all the other turret scripts get a chance to run and check the turret.mutex local
variable. If the entire section were atomic, then there would be no point to setting the local
variable. No other script could possibly run to even check to see if the local variable is set. At
this point, you need to stop the atomic operation, and give the script engine an opportunity to
make sure the other turrets get an opportunity to run. The wait instruction makes the script wait
long enough to ensure that all the other turrets get a chance to exit before the local variable is
reset.

If the code were written like this instead:

101 if not [THIS] -> get local variable: name= 'turret.mutex'
102 @ call script 'some.other.script'
103 [THIS] -> set local variable: name= 'turret.mutex' value=[TRUE]

...then the operation to test the local variable and the operation to set the local variable would
not be guaranteed to occur atomically due to the presence of an instruction that is an interrupt
point at line 102. Thus, in the second example, the following is now possible:

1. Turret 1's script reaches line 101 and checks to see if the local variable 'turret.mutex' has
been set. It has not been set, so it passes to line 102.

2. Turret 1's script is an interrupt point (the scripting engine is now allowed to decide if
another script should be allowed to run). The scripting engine suspends turret 1's script
and runs turret 2's script.

3. Turret 2's script reaches line 101 and checks to see if the local variable 'turret.mutex' has
been set. Since turret 1's script was suspended before reaching line 103, it has not been
set and turret 2's script passes to line 102 as well.

Now both turret 1's and turret 2's script will be inside the check and will both send messages to
the player – our code that was supposed to prevent this failed.

In the above example, putting a call script statement in at line 102 wasn't really a very logical
thing to do anyways. The natural way to write the code was the way shown in the first
example, which would have made the code atomic. However, it is good coding practise to
always remember to check where your code is and isn't atomic. Getting multiple scripts that
are running concurrently to interact and operate with each other can be troublesome. Just
because the code reaches an interrupt point doesn't mean the scripting engine has to suspend the
script and restart another. This all depends on many factors that are beyond a script's control.
This means that a script that depends on certain actions being atomic that inadvertently have
interrupt points at the wrong spot might run just fine one time, and fail at another. At what
interrupt points the scripting engine decides to suspend one script and restart another. Making
sure you are always aware of when and where your interrupt points occur and what can happen
at them will help ensure your code performs the way you intend it to perform.

pg. 83

The X² MSCI Programmer's Handbook

7.3 7.3 7.3 7.3 Artificial Life (AL) EngineArtificial Life (AL) EngineArtificial Life (AL) EngineArtificial Life (AL) Engine
PluginsPluginsPluginsPlugins

An Artificial Life (or AL) plugin is simply a script – or rather a series of scripts – that follow a
certain structuring convention. The system is designed to make it easier to write scripts that
perform environmental functions. That is, scripts that run in the background that add to the
general ambiance.

In general an AL plugin usually consists of at least three scripts:

1. Registration script – this script informs the system of the presence of an AL plugin.

2. Event handler – this script handles the several AL system events.

3. Timer handler – the real meat of an AL plugin, this script is run periodically.

Registration Script

The simplest of all the AL plugin scripts. The name of this script must be
“al.plugin.<pluginname>”. All scripts that are named thus are run automatically by the AL
engine every time a new game starts, or a game is loaded.

All this script needs to do is register an AL plugin's event handler script:

001 al engine: register script= <scriptname>

Whatever script is specified in the al engine: register script instruction becomes that plugin's
main event handler script.

Event Handler Script

The event handler script must be written to accept two string arguments. The first is a string
that acts as a unique identifier for that AL plugin (the AL engine actually uses the name of the
event handler script for this). The second is a string that identifies the type of event that is
occurring. There are several different AL events – all of them need to be dealt with by an AL
plugin's event handler.

Event Description

'init'
Occurs when a new game starts, or when a new AL plugin is detected for the first
time.

'reinit' Occurs each time a game is loaded.

'start' Occurs when the player turns on an AL plugin in the Artificial Life Settings menu.

'stop' Occurs when the player turns off an AL plugin in the Artificial Life Settings menu.

'isenabled'
Occurs when the Artificial Life Settings menu is about to be displayed. Informs the
AL engine whether or not this plugin is enabled.

'timer'
Occurs at a regular interval as set with the al engine: set plugin timer interval
instruction. This event occurs whether or not the plugin is actually enabled or not.

Table 7.3 - AL Engine Event Types

The “isenabled” event is required because the AL system does not store the state of a plugin.
Even though you can select whether a plugin should be run from the Artificial Life Settings
menu, it is each individual plugin that actually stores this information. Your plugin could thus
decide that it didn't want to ever turn off, if it wanted to, by ignoring “stop” events and always
returning [TRUE] when it is asked if it is enabled.

pg. 84

The X² MSCI Programmer's Handbook

Once a timer interval has been set with an al engine: set plugin timer interval instruction, the
“timer” event will occur regularly whether or not the plugin is enabled (remember, the system
doesn't even know if the plugin is enabled or not).

The AL engine doesn't store any information about a plugin. This means it is up to each
individual plugin to store its own internal state. Because of the way that arrays are stored when
stored as a global variable, they are uniquely
suited to storing an AL plugin's state. An AL
plugin should use a single array as the
method of storing all its data. This has the
added benefit of using only a single global
variable for any given AL plugin. The plugin
ID as passed to the plugin's event handler
should be the name used to store this global
variable under. Typically, the first two
elements of the array store the version of the
array, and the state of the plugin (whether or
not it is enabled). It's important to have a
version number in case later versions of the
plugin change the structure. Once the
structure definition changes, without a
version number in the array, the script would
have no way to tell what version of the plugin
created the array – and thus what the actual
structure of the array was. With a version number in the array as the very first element, the
script can check to see what the data structure's version is and take appropriate measures if it is
an old version.

Of course, there is no actual requirement to store your data in this way. However, as all built-
in AL plugins do, and as any future plugin that gets signed will store its data this way, it's a
very good idea to conform to this standard. It will make the plugin easier to read for others if it
is written in the expected way.

What follows is an example of an AL plugin's event handler. This is from the Hired Gunnery
Crews plugin:

Arguments
1: al.PluginID, Var/String, 'Plugin ID'
2: al.Event, Var/String, 'AL Event'

001 * --- -------------
002 * Hired Gunnery Crews version 3.00
003 * Military Transports AL Plugin
004 * Written by Kurt Fitzner - a.k.a. Reven
005 *-- ------------
006 * Main AL event handler
007 * --- ----------- -
008
009 * First some DEFINEs - to make the state array easi er to read
010 $AL.STATE.VERSION = 0
011 $AL.STATE.ENABLED = 1
012
013 $al.State = get global variable: name= $al.PluginID
014 if not $ al.State
015 $al.State = array alloc: size= 7
016 $Version = get script version
017 $al.State [$AL.STATE.VERSION] = $Version
018 $al.State [$AL.STATE.ENABLED] = [TRUE]

pg. 85

Technical Tidbit

When an array is stored as a global variable, it is moved
into an area of memory that X² preserves when you save
your game. When you subsequently retrieve the array
using the get global variable instruction, what is
actually retrieved isn't the whole array, but a the address
to where the array is. A pointer to it. It is done this
way because arrays are typically a lot larger than other
types of data. Giving a script a pointer to the array is a
lot more efficient than moving the entire array itself.

Since the entire array isn't copied out, changes you
make to that array are actually stored back in the global
variable memory area. This means that when a value in
that array is changed, you don't need to execute a set
global variable instruction to store the changed array.

Only arrays work this way. The actual value of other
data types are copied out when a get global variable
instruction is executed.

The X² MSCI Programmer's Handbook

019 set global variable: name= $al.PluginID value= $al.State
020 end
021
022 $al.Retval = null
023 if $al.Event == 'init' OR $al.Event == 'reinit'
024 $al.PluginDesc = sprintf: pageid= 2498 textid= 1100 , null , null , null ,

null , null
025 al engine: set plugin $al.PluginID description to $al.PluginDesc
026 al engine: set plugin $al.PluginID timer interval to 900 s
027 else if $al.Event == 'start'
028 $al.State [$AL.STATE.ENABLED] = [TRUE]
029 else if $al.Event == 'stop'
030 $al.State [$AL.STATE.ENABLED] = [FALSE]
031 else if $al.Event == 'isenabled'
032 $al.Retval = $al.State [$AL.STATE.ENABLED]
033 else if $al.Event == 'timer'
034 @ = [THIS] -> call script 'al.miltransports.timer' : Plugin

ID= $al.PluginID AL state data= $al.State
035 end
036 return $al.Retval

• Lines 1-9 : Just a script identification and a little commenting. Comments are your
friend.

• Lines 10-11 : Arrays are hard to read when used as a packed structure. Making some
variables for use like a 'C' language #define is a good idea to help readability.

• Lines 13-20 : If the global variable holding the plugin's state array doesn't exist yet, then
create the array. Use the current version number of the script as the array's data version
number. This lets you know exactly what version of the script created the array. The array
is created large enough to store all the persistent data needed by the plugin.

• Line 22 : An AL plugin's event handler only needs to return a value when called with
the “isenabled” event. This line just initializes the variable used to return a value to null.

• Lines 23-26 : Code to handle the “init” or “reinit” events. For this particular plugin
(actually, for almost all plugins) there isn't a need to perform different activities for “init”
and “reinit” events. The plugin's timer interval is set here – in this case to 30 minutes (900
seconds). The plugin's description is also set here. Reading the description from a language
file makes the plugin easier to customize for different languages. This description is what
id displayed in the Artificial Life Settings menu.

• Lines 27-30 : The “start” and “stop” events. All that is done here is to set the internal state
variable used to store whether the plugin is enabled or not to [TRUE] or [FALSE].
Anything else that needs to be done when your plugin starts or stops can be performed here.

• Lines 31-32 : Handle the “isenabled” event. Simply set the return value for the script to be
equal to the state variable that holds the enabled state for the plugin.

• Lines 33-34 : Handle the “timer” event. Since most of an AL plugin's functionality is in the
timer event, normally this is an external script called from the event hander script. This
makes the event script smaller and easier to read.

Timer Handler Script

The timer handler script is where most of the actual meat of an AL plugin is performed. It is
executed periodically at an interval set by the al engine: set timer interval instruction. As
mentioned above, this event is performed whether or not the plugin is actually enabled.
Therefore, your plugin's timer handler should test to see whether or not the plugin is enabled
before it does anything:

pg. 86

The X² MSCI Programmer's Handbook

Arguments
1: al.PluginID, Var/String, 'Plugin ID'
2: al.State, Value, 'AL state data'

001 $AL.STATE.VERSION = 0
002 $AL.STATE.ENABLED = 1
003 if $al.State [$AL.STATE.ENABLED]
. .. all the work done here
100 end

After the test for whether or not the AL plugin is enabled, place all your code that performs
your AL plugin's duties. Of course, you can also distribute duties to other scripts which are
called from here.

7.4 7.4 7.4 7.4 Automatic Command RestartingAutomatic Command RestartingAutomatic Command RestartingAutomatic Command Restarting

The Reinit Script Caches section in the introduction touched on the concept of script command
caching. This caching has a side effect that may not be readily apparent. This section will
discuss the consequences of script caching and talk about how you the developer can work
around it.

First of all, a review of script caching. There are actually two types of caching that occur
within the scripting engine:

1. The global script cache. Every script that is attached to a command, such as with the
global script map instruction, is stored in a cache. Whenever that command is executed
on any ship, the script is not read from its file, it is read from this cache. Using the
Reinit Script Caches command in the scripting menu will cause this cache to be
refreshed. It also causes all setup scripts be rerun.

2. Running script cache. Every script that is currently running is stored separately. If there
are one hundred ships all running the same script command, then there are one hundred
copies of that script in memory and saved in save games.

The first type of caching doesn't have any real consequences to script developers. It is easy to
use the Reinit Script Caches command to cause this cache to be recreated. The second type of
caching can have a significant effect.

Imagine that you wish to make changes to a script that is used extensively – perhaps one that is
attached to a trade command that has tens or even hundreds of ships running it. Each one of
those ships has its own copy of that script, and there is no external way to cause them all to
reload the script. The only solution is for every one of those scripts to terminate and reload.
Do you as a developer want to force a player to go through hundreds of ships and reissue a
command to every one when your script is updated? Your script won't be very popular if a
player has to do this more than once.

The answer is scripts that are intelligent enough to know when they are changed, and that can
restart themselves.

There are two main considerations when giving your scripts the ability to self-restart: detecting
when a change has occurred, and performing the restart.

Detecting Script Changes

There is a convenient versioning system built right into the script editor. Every script has a
number which represents its version. The get script version instruction will return that version
number. It cannot, however, be used directly in a script to determine when the script has

pg. 87

The X² MSCI Programmer's Handbook

changed, because the instruction will return the version of the script that was loaded when it
was first run – not the version of the script that currently exists on disk. Your script is going to
need a little outside help to determine when it has been changed. A common source of this help
is in a setup script.

Setup scripts aren't attached to a menu command, so they aren't stored in the global script
cache. They also aren't persistent – they run, perform their duty, and terminate. This means
that every time they are run, they are loaded fresh from disk. The scripting engine runs them
automatically every time a new game is started or a saved game is loaded. A setup script is
required for any script which is attached to a command anyways, so they are ideal for our
purposes. Adding two lines to a setup script will give our restarting code all the help it needs:

100 * This code goes in the setup script
101 $Version = get script version
102 set global variable: name= 'myplugin.version' value= $Version

All the code in our setup script has to do is get its version number, then store that as a global
variable.

Our actual script – the one that will be detecting when it changes, it now just needs to check a
global variable against its own version number:

120 * This code goes in the command script
121 $CurrentVersion = get script version
122 $GlobalVersion = get global variable: name= 'myplugin.version'
123 if not $CurrentVersion == $GlobalVersion
124 * Restart
125 end

Quite simple – get the global version, get the script version, if they don't match then restart.
The one “gotcha” is this mechanism assumes the version numbering between the setup script
and the command script is the same. Some script writers like to have a different version for
each separate script file in a plugin that tracks changes to that individual file. The script change
detection method above, however, assumes that you have a common version number across all
scripts for a given plugin16. If you use different version numbering for each script file, then
change the above code – eliminate the get script version instructions and replace them with a
hard coded number.

Performing the Restart

The most important thing to remember when coding your restart system is that a command
cannot directly restart itself. This is a limitation in the scripting engine. In order to restart your
command properly, it must be done in two steps. A global process is started and given the
information on which script to restart on which object. It is that global process which then
restarts the command. The above example with the restart code filled in is as follows:

120 * This code goes in the command script
121 $CurrentVersion = get script version
122 $GlobalVersion = get global variable: name= 'myplugin.version'
123 if not $CurrentVersion == $GlobalVersion
124 $NULL = null
125 START $NULL -> call script 'plugin.myplugin.lib.restart' : Command to

restart= 'MyCommand' Task ID =0 Target Ship= [THIS]

16 The author recommends using a common version number across all scripts in a given plugin for several reasons. For one,
it allows the use of the above-mentioned restarting system. Hard-coding in the version numbers for restart detection
purposes is a less visible method. Having a common version number also makes all files associated with your plugin
easier to pick out. It also makes the “release version” (the version number you release your plugin under) and all the
individual script file versions the same. Simply number your scripts “100” to mean version 1.00, “210” to mean version
2.10, etc.
In all, it is the author's opinion that this is a more visible and elegant solution.

pg. 88

The X² MSCI Programmer's Handbook

126 return null
125 end

And here is the restart “helper” script:

Arguments:
1: WhichScript , Var/String , 'Script to restart'
2: TaskID, Var/Number, 'Task ID'
2: Ship , Var/Ship owned by Player , 'Target Ship'

001 @ = wait randomly from 400 to 600 ms
002 if $WhichScript == 'MyCommand'
003 $Ship -> start task $TaskID with script 'plugin.myplugin.mycommand' and

prio 0: arg1= $TaskID arg2= null arg3= null arg4= null arg5= null
004 else if $WhichScript == 'MyOtherCommand'
005 $Ship -> start task $TaskID with script 'plugin.myplugin.myothercommand'

and prio 0: arg1= $TaskID arg2= null arg3= null arg4= null arg5= null
006 end
007 return null

• Line 1 : A wait to give the original script enough time to terminate.

• Line 2 : There may be several commands distributed with a plugin – no sense in having a
separate restart script for each of them. Just give your restart script an argument telling it
which command to restart. Then, depending on what the argument is, a different script can
be restarted.

• Line 3 : You'll notice that the call script instruction was not used. With the START
prefix it could have been. However, is is possible that you may want to restart scripts used
as “additional ship commands” or turret commands. In those cases, the scripts won't be
running as task zero. You will have to use “start task” in order to start a script under a
different task ID. If you aren't making any scripts that run on a different task, then using
call script here is fine. It is also fine to continue to use start task with a task ID of zero.

pg. 89

The X² MSCI Programmer's Handbook

Annex AAnnex AAnnex AAnnex A. Data Charts. Data Charts. Data Charts. Data Charts

A.1A.1A.1A.1 Plot states Plot states Plot states Plot states

Plot State

Flag

Description Plot State

Flag

Description

1 3 Main introduction ended 2 18 AP Gunner mission

1 4 Message from Terracorp received 2 19 AP Gunner mission

1 5 Contacted Terracorp 2 20 Arrived at Black Hole Sun

1 6 Accepted the delivery mission 2 21 Failure of AP Gunner mission

1 7 Received message regarding the mission 2 22 Message from Ban Danna received

1 8 Successfully completed delivery 3 3 Have contacted Ban Danna

1 9 Received transport mission briefing 3 4 Have contacted Mik Balser (M1 C.O.)

1 10 Accepted transport mission 3 5 Found the correct asteroid

1 11 Received message regarding the mission 3 6 Given the order to destroy the installation

1 12 Passenger on board transport 3 7 Installation successfully destroyed

1 13 Attack of the pirates 3 8 Given the order to collect the Khaak parts

1 14 Rescued by “secret” ship 3 9 Successfully collected the Khaak parts

1 15 Transport mission failed 3 10 Reported back to Mik Balser

1 16 Passenger successfully transported 3 11 Returned and reported to Ban Danna

1 17 Khaak activation 3 12 Contacted Saya Kho

1 18 One or more failed plot 1 missions 3 13 Contacted Mi'ton

1 19 Mission to meet Brennan 3 14 Payed Mi'ton (the little weasel)

2 3 Introduction of the Khaak 3 15 Received the Khaak coordinates

2 4 Arrived at Brennan's Triumph gate 3 16 Jumped into Khaak space

2 5 Looking for the cover plate 3 17 Returned to Saya Kho

2 6 Have found the cover plate 3 18 Found the “black box”

2 7 Met Bret in Antigone Memorial 3 19 Returned with the “black box”

2 8 Visited the Antigone Memorial museum 3 20 Instructed to fly to Omicron Lyrae

2 9 Jumpdrive installed in ship 3 21 First Khaak wave arrived

2 10 Arrived at Paranid Prime 3 22 Received message from Kyle Brennan

2 11 Purchased the LFL device 3 23 Khaak ships have arranged themselves

2 12 Escorting Bret 3 24 Close to the Khaak battleship

2 13 Escorting Saya 3 25 The Khaak battleship has fired

2 14 AP Gunner mission 3 26 Ordered to destroy the M0 power generators

2 15 AP Gunner mission 3 27 Power generators destroyed

2 16 AP Gunner mission 3 28 Battleship is destroyed

2 17 AP Gunner mission 3 29 Invited to award ceremony

Table 8.1Plot states for the is plot instruction

pg. 90

The X² MSCI Programmer's Handbook

A.2A.2A.2A.2 Audio Samples Catalogue Audio Samples Catalogue Audio Samples Catalogue Audio Samples Catalogue

A catalogue of all audio sound-effect samples in X².

Dur. Description PS17

102 0.67 Engine sound (Capital ships) No

103 1.02 Engine sound (Argon/Boron/Xenon M3) No

104 1.45 Engine sound (All M4 except Khaak) No

105 1.46 Engine sound (Boron/Split TP, All M5 except Khaak) No

106 2.00 Engine sound (Argon/Paranid/Teladi TP, All TS, Goner Ship) No

107 2.37 Engine sound (Paranid/Split/Teladi/Pirate M3) No

108 1.95 Ambient station sound No

109 0.90 Engine sound (UFO/Spacefly) No

110 0.74 Engine sound (Unknown)/Dynamo No

111 0.16 Weapons fire (Khaak laser) No

112 1.71 Engine sound (Missile) No

113 0.92 Weapons fire (Ion Disruptor) No

114 1.45 Engine sound (Khaak M3, M4, M5) No

903 1.02 Hull impact (no shields) Yes

904 1.42 Hull impact (shields) Yes

906 1.02 Hull impact (no shields) - identical to 903 Yes

907 1.12 Weapon impact (IRE, Alpha PSG) Yes

908 1.30 Weapon impact (PAC, Beta PSG) Yes

909 1.59 Weapon impact (HEPT/PPC, Gamma PSG) Yes

912 0.44 Weapons fire (Alpha IRE) Yes

913 0.73 Weapons fire (Beta IRE) Yes

914 0.65 Weapons fire (Gamma IRE) Yes

915 1.33 Small (Mosquito/Wasp) missile launch Yes

916 2.11 Medium (Dragonfly/Silkworm) missile launch Yes

917 3.80 Large (Hornet) missile launch Yes

918 1.70 Missile/small ship explosion Yes

919 1.41 M6 ship Explosion Yes

920 6.42 Station/Capital ship explosion Yes

922 2.97 Fade in and out low white noise Yes

923 0.76 Alert sound (hostile contact) Yes

924 0.39 Electric buzzer Yes

925 0.75 Alert sound (incoming missile) Yes

928 0.25 High-pitched electric buzzer Yes

929 1.13 Unconventional weapons fire or effect Yes

17 This column indicated the samples that are available to be played through the play sample instruction. Unfortunately,
most of the engine effects are not available to be played this way.

pg. 91

The X² MSCI Programmer's Handbook

Dur. Description PS

930 0.29 Radio keying off Yes

931 0.42 Radio beep Yes

932 0.36 Radio keying on Yes

934 5.00 Engine cycling up (cut scene?) Yes

935 0.90 Engine sound (unknown - cut scene?) Yes

936 2.55 Engine cycling down (cut scene?) Yes

937 3.80 Engine background ambiance Yes

938 3.42 Engine or systems background ambiance Yes

940 0.55 Engine or systems background ambiance Yes

943 1.61 Background clunking (station FX?) Yes

944 0.76 Electric motor ambiance Yes

945 3.76 Door sealing or industrial press with echo Yes

946 1.57 Jet engine effect with tarmac-like reverb Yes

949 3.59 Quiet cockpit ambiance Yes

950 5.38 Ambient engine sound Yes

951 3.64 Ambient reactor sound Yes

952 2.48 Ambient engine sound Yes

953 0.54 Menu sound (menu on) Yes

954 0.54 Menu sound (menu off) Yes

955 0.28 Menu sound (select) Yes

956 0.27 Menu sound (error) Yes

957 0.11 Menu sound (cursoring) Yes

958 0.67 Weapons fire (Alpha PAC) Yes

959 0.99 Weapons fire (Beta/Gamma PAC) Yes

960 0.67 Weapons fire (PPC/HEPT) Yes

961 26.52 Moon landing "Eagle Has Landed" Yes

962 1.05 Electric vibration Yes

963 1.39 Docking arms extending (cut scene) Yes

964 2.50 Cargo bay opening Yes

965 3.42 Chemical rocket effect (planet ferry launch) Yes

966 3.22 Scanner effect Yes

967 4.04 Industrial electric motor whine, clunking to a stop Yes

968 0.23 Menu "open window" effect Yes

969 1.64 Cargo bay closing effect Yes

970 1.71 Mechanical clunking, start of industrial electric motor Yes

971 0.76 Fizzle effect - electric arc Yes

972 0.29 Short beep Yes

973 17.10 Chemical rocket effect (longer version of 965) Yes

pg. 92

The X² MSCI Programmer's Handbook

Dur. Description PS

974 15.97 Energy field/motor/lift effect, then winding down Yes

975 10.80 Engine starts, runs, clunk, engine stops Yes

976 16.04 Fade in jet with Doppler effect then long explosion or sonic boom Yes

977 5.61 Engine shutting down Yes

978 21.26 Long engine wind up Yes

979 0.48 Camera shutter/wind (Video Enhancement Goggles) Yes

980 0.61 Alarm sound/Sudden energy power up Yes

981 1.22 Alarm sound/Sudden energy power down Yes

982 0.11 Camera shutter Yes

983 8.71 Quiet engine windup Yes

984 12.84 Large reverberating explosion/Thunder Yes

985 0.27 Computer bleep (used in Engine Booster script) Yes

986 0.02 Short, sharp computer beep Yes

987 0.35 Sector Map zoom in noise Yes

988 0.27 Computer bleep - loud (same as 985 but louder) Yes

989 0.40 Sector Map zoom out noise Yes

990 3.40 Pneumatic seal Yes

991 3.86 Transporter effect Yes

992 0.32 Bug splat Yes

993 21.33 Heavy breathing/Spacesuit panic (cut scene) Yes

994 16.00 Heavy breathing/Spacesuit panic - shorter (cut scene) Yes

995 0.62 Video camera zoom in effect (cut scene) Yes

996 1.03 Video camera zoom in effect - longer (cut scene) Yes

997 10.19 Pneumatic seal/motor whine - Extend docking arms (cut scene) Yes

998 5.16 Rolling cymbal-like effect fade in & out Yes

1000 9.34 Spacesuit visor cracking (cut scene) Yes

1001 1.41 Mechanical press-like effect - distant Yes

1002 1.27 Rotary grinder/loud modem-like effect Yes

1003 13.84 Alien Planet ambiance Yes

1004 14.30 Underwater bubbles Yes

1005 9.43 Electronic background buzz/hum Yes

1006 1.37 Station announcement paging effect Yes

1007 2.25 News Station Audio Logo Yes

1008 3.22 Incoming Message alert effect Yes

1100 3.95 Promotion alert effect Yes

1101 2.85 Electric growl, distant, pitch bends down Yes

1102 1.21 Electric whoop, distant, pitch bends up slightly Yes

1103 0.19 Electric/computer system bleep, distant Yes

pg. 93

The X² MSCI Programmer's Handbook

Dur. Description PS

1104 8.19 Mechanical clunking, intermittent, ambient Yes

1105 2.40 Reverberating electrical white-noise with sweeping effect Yes

1106 4.72 Ring modulated sweeping electrical effect with approach and fade out Yes

1107 6.83 Heavy breathing Yes

1108 8.19 Person trying to fake wind effect into a microphone Yes

1109 4.51 Dull explosion Yes

1110 2.75 Small, low, dull explosion or shock wave Yes

1111 55.72 Long electrical modulated ambiance with rhythmic clack Yes

1112 31.50 Very long engine build up, sustain, quick release Yes

1113 7.49
Electrical/pneumatic sounds interspersed with a whirring buildup (used in Engine Booster
script)

Yes

1114 0.32 Bloop-bloop-bleep (used in Gunnery Crews scripts) Yes

1115 2.77 Mechanical sound with pneumatic recycling (used in Gunnery Crews scripts) Yes

1116 0.12 Slightly metallic click/switching effect Yes

1117 5.89 Loopable electrical modulated ambiance with rhythmic clack Yes

1118 1.59 Alternating DTMF warning beeps (used in Engine Booster script) Yes

1119 0.13 Click Yes

1120 0.24 Solenoid engage/release (quick) Yes

1121 60.55 Ship stealing effect (cut scene) Yes

1122 100.46 Lift/electric-powered wheeled vehicle moving about Yes

1123 18.09 Quiet electronic ambiance with communication sounds Yes

1124 0.61 tri-tone beep alert Yes

1125 3.50 Electric hatch opening or closing Yes

1126 0.40 Servo shifting Yes

1127 1.44 Metallic impact/mechanical clank Yes

1128 2.53 Electric motor/drill Yes

1129 1.75 Obnoxious alarm/hailing effect (used in Sector/Universe Trader script) Yes

1130 1.02 Mechanical clack with lead out Yes

1131 52.69 Typist/Slow telex machine Yes

1132 4.99 Computer drive (old-style stepper motor) access effect Yes

1133 2.42 Chime, long and soft Yes

1134 0.75 Electric buzzer Yes

1135 0.43 Key press Yes

1136 0.43 Key press Yes

1137 2.56 Industrial ambiance, distant Yes

1138 4.47 Industrial ambiance/bottles clanking, distant Yes

1139 6.35 Crashing with meowing cat Yes

1140 8.18 Electronic radio communications/RTTY Yes

1141 35.96 underwater bubbles (like 1004 but longer) Yes

pg. 94

The X² MSCI Programmer's Handbook

Dur. Description PS

1142 4.28 Three metallic clanks/hammer strikes on metal Yes

1143 18.38 Submarine hull popping/creaking Yes

1144 4.07 Weapon firing effect or deadly automated defence mechanism Yes

1145 8.07 Energy field/electronic ambiance - loopable Yes

1146 8.04 Energy field/electronic ambiance Yes

1147 7.03 Heavily ring modulated effect/communications/weapon/force field Yes

1148 13.39 Large explosion with several secondaries Yes

1149 4.08 Mechanical/pneumatic recycling effect Yes

1150 3.77 Distant explosion Yes

1151 1.00 Dull impact Yes

1152 2.33 Explosion/artillery firing Yes

1153 2.00 Explosion/artillery firing (distant) Yes

1154 4.40 Distant explosion Yes

1155 4.00 Distant explosion with trailing reverb Yes

1156 0.34 Fast pass by (train sweeping past effect from cut scenes) Yes

1157 0.44 Mechanical/electronic system effect Yes

1158 1.44 Person in pain Yes

1159 6.05 Clanks and crashes (from opening cut scene explosion during escape attempt) Yes

Table 8.2 - Audio Samples

pg. 95

The X² MSCI Programmer's Handbook

A.3A.3A.3A.3 Speech Samples Catalogue Speech Samples Catalogue Speech Samples Catalogue Speech Samples Catalogue

The following charts list messages from the built-in X² language files for which there are
corresponding speech or video. The messages are divided up into pages, where each page
generally contains all the phrases for one particular theme or purpose.

Page 7 – Sector names
Page 7 contains all the sector names. The format for the ID numbers is 102XXYY, where XX
and YY are the X and Y coordinates for the sector on the sector map, with X=01, Y=01 being
the top-left most sector (Kingdom End). Spoken by the on-board computer voice.

ID # Sector ID # Sector ID # Sector ID # Sector

1020101 Kingdom End 1020402 Argon Prime 1020614 Circle Of Labour 1021003 Emperor's Wisdom

1020102 Rolk's Drift 1020403 The Wall 1020616 Xenon Sector 472 1021004 Trinity Sanctum

1020103 Queen's Space 1020404 Farnham's Legend 1020617 Thyn's Abyss 1021005 Preacher's Refuge

1020104 Menelaus' Frontier 1020405 Bala Gi's Joy 1020701 Emperor Mines 1021006 Shore of Infinity

1020105 Ceo's Buckzoid 1020406 Blue Profit 1020702 Paranid Prime 1021007 Lucky Planets

1020106 Teladi Gain 1020407 Rhonkar's Fire 1020703 Priest Rings 1021008 Rolk's Legacy

1020107 Family Whi 1020408 Rhonkar's Clouds 1020704 Priest's Pity 1021009 Great Trench

1020114 The Vault 1020409 Tharka's Sun 1020705 Danna's Chance 1021010 Ceo's Doubt

1020117 Unknown Sector 1020410 Cho's Defeat 1020706 Nopileos' Memorial 1021104 Bad Debt

1020118 Xenon Sector 534 1020415 Family Tkr 1020707 Hatikvah's Faith 1021110 LooManckStrat's Legacy

1020120 Xenon Sector 596 1020416 Tkr's Deprivation 1020708 Aladna Hill 1021202 Unknown Sector

1020201 Three Worlds 1020417 Ghinn's Escape 1020709 Akeela's Beacon 1021203 Rhy's Desire

1020202 Power Circle 1020418 Hila's Joy 1020712 Scale Plate Green 1021204 Ministry Of Finance

1020203 Antigone Memorial 1020419 Ocean of Fantasy 1020713 Nyana's Hideout 1021210 Mi Ton's Refuge

1020204 Rolk's Fate 1020501 Red Light 1020714 Omicron Lyrae 1021215 Unknown Enemy Sector

1020205 Profit Share 1020502 Home of Light 1020715 Treasure Chest 1021217 Unknown Enemy Sector

1020206 Seizewell 1020503 President's End 1020716 Black Hole Sun 1021303 Family Rhy

1020207 Family Zein 1020504 Elena's Fortune 1020802 Empire's Edge 1021310 Moo-Kye's Revenge

1020214 Shareholder's Fortune 1020505 Olmancketslat's Treaty 1020803 Duke's Domain 1021316 Unknown Enemy Sector

1020215 Mines Of Fortune 1020506 Ceo's Sprite 1020804 Emperor's Ridge 1021401 Depths Of Silence

1020218 Getsu Fune 1020507 Family Rhonkar 1020808 Light of Heart 1021402 Dark Waters

1020219 Menelaus' Paradise 1020510 Patriarch's Keep 1020811 Eighteen Billion 1021403 Reservoir Of Tranquillity

1020220 Xenon Sector 597 1020511 Two Grand 1020812 Xenon Sector 347 1021404 Barren Shores

1020301 Cloudbase North West 1020517 Family Njy 1020816 Nathan's Voyage 1021409 Priest Refuge

1020302 Herron's Nebula 1020518 Njy's Deception 1020817 Wastelands 1021410 Cardinal's Domain

1020303 The Hole 1020519 Family Ryk 1020818 Unknown Sector 1021411 Sacred Relic

1020304 Atreus' Clouds 1020601 Cloudbase South West 1020819 Unknown Sector 1021415 Unknown Enemy Sector

1020305 Spaceweed Drift 1020602 Ore Belt 1020902 Preacher's Void 1021417 Unknown Enemy Sector

1020306 Greater Profit 1020603 Cloudbase South East 1020904 Pontifex' Realm 1021503 Great Reef

1020307 Thuruk's Pride 1020604 Split Fire 1020906 Light Water 1021509 Spring Of Belief

1020308 Family Pride 1020605 Brennan's Triumph 1020908 Montalaar 1021510 Friar's Retreat

1020310 Patriarch's Retreat 1020606 Company Pride 1020910 New Income 1021511 Pontifex' Seclusion

1020315 Home Of Opportunity 1020607 Thuruk's Beard 1020911 Ianamus Zura

1020319 Bluish Snout 1020611 Profit Center Alpha 1020917 Interworlds

1020401 Ringo Moon 1020612 PTNI Headquarters 1021002 Duke's Vision

Table 8.3 - Speech Samples, Page 7 - Sector Names

pg. 96

The X² MSCI Programmer's Handbook

Pages 9 & 12 – Latin and Greek Letters

Pages 9 and 12 consist of the letters of the Latin and Greek alphabets respectively, spoken by
the on-board computer voice.

Page 9 – Latin

Alphabet

Page 12 – Greek

Alphabet

ID # Letter ID # Letter

500 A 100 alpha

501 B 101 beta

502 C 102 gamma

503 D 103 delta

504 E 104 epsilon

505 F 105 zeta

506 G 106 eta

507 H 107 theta

508 I 108 iota

509 J 109 kappa

510 K 110 lambda

511 L 111 mu

512 M 112 nu

513 N 113 xi

514 O 114 omicron

515 P 115 pi

516 Q 116 rho

517 R 117 sigma

518 S 118 tau

519 T 119 upsilon

520 U 120 phi

521 V 121 chi

522 W 122 psi

523 X 123 omega

524 Y 124 omega

525 Z

Table 8.4 - Speech Samples, pages 9 and 12 - Latin and Greek Alphabets

pg. 97

The X² MSCI Programmer's Handbook

Page 13 – Miscellaneous Phrases

This page consists of all the various phrases, warnings, alerts, and other tidbits that are pieced
together to make up most of what you hear when playing the game. Spoken by the on-board
computer voice.

ID # Phrase

1 Entering system

2 No Autopilot installed!

3 Autopilot damaged!

4 No Aim!

5 ejected

6 Targeting

9 No station for docking found!

10 Alert: Missile closing

11 Alert: Mine closing

13 No missiles

15 landed

17 Unidentified object

18 self-destructed

20 Message received

22 collision of

23 with

24 not installed

25 not available

27 available

29 destroyed

30 damaged

31 This ship is too large to dock with an M6 class corvette ship. Only M5 class scout ships can dock on a
corvette

32 This ware type does not fit into your ship.

33 Container type too large for cargo hatch!

34 New formation initiated

35 Formation established

36 Target outside communication range

37 Remote connection lost

38 Game successfully saved

39 Saving failed

40 Loading savegame

41 Your are being promoted

42 This is a pirated copy of X2

43 Savegame only possible inside stations or with salvage insurance.

pg. 98

The X² MSCI Programmer's Handbook

ID # Phrase

44 New mission received

45 This is the maximum distance in sectors your transporter ships will fly to buy the resources needed for
this factory.

46 You can move funds to and from your factory. A factory needs money to be able to automatically send
transporters to buy resources using advanced trading commands.

47 You can set if ships of other races are allowed to buy products from this factory

48 You can program the ship computer to use missiles during fights more or less frequently with this
setting

49 You can set a flight formation if this ship is part of a group

50 You can set the homebase for a ship to allow advanced trade commands

51 You can program the ship computer to custom friend foe settings with this command

52 You can program the ship computer to inherit your global friend foe settings with this command

53 This advanced feature allows you to write custom made programs for the ship computer.

130 Please set remote command mode

131 Command accepted

132 New command set

133 New remote command cannot be executed

134 This missile is not compatible with your ship

135 Command rejected

136 This weapon is not compatible with your ship

137 This shield is not compatible with your ship

200 Selected

1200 You cannot buy this factory at the moment, because you do not have the necessary storage space to
transport all the equipment included in this package. You need to find and hire a TL Class
transportation cruiser!

1245 Factory construction initiated in sector:

1246 Factory construction finished in sector:

1247 Your factory in sector:

1248 needs more resources for production!

1250 No space for additional lasers

1251 No space for additional shields

1252 No space for additional missiles

1253 Not enough space in cargo hold

1254 Insufficient credits!

1255 Warning! Cargo bay open, shields are down!

1256 Cargo bay closed.

1257 Cargo bay now contains (continues at 1293)

1258 Target is now in firing range!

1259 Target left firing range!

1261 Autopilot now locked on

1262 Ship is under attack by

pg. 99

The X² MSCI Programmer's Handbook

ID # Phrase

1263 Autopilot off

1264 Autopilot activated

1265 Attention. Energy low!

1266 Danger! Entering atmosphere

1267 No information available

1268 Ejecting

1269 Turbo engaged

1270 Shields critical

1271 Warning

1272 sold

1273 bought

1274 installed

1275 removed

1276 Emergency Signal from

1277 Assistance required at

1278 We are scanned

1279 by

1280 The ship is scanned

1282 Target lost

1283 Docking granted

1284 Docking denied

1285 Docking aborted

1286 transferred

1287 New price selected

1288 Funds transferred

1289 Resources are not sold

1290 Products are not bought

1291 Spherical Radar mode

1292 Planar Radar mode

1293 Cargo bay emptied

1294 ready

1295 The credits that this factory made by selling its products can be transferred to your account. Also credits
from your account can be transferred to the factory, so freighters working for you can buy resources.

1296 You can specify at which price the freighters working for this factory should buy resources

1297 Changing this setting is only possible after you hire a transporter to work for this factory

1298 You can specify at which price other factories and their transporters can buy your product. If your price
is competitive it is more likely other factories and stations will choose your factory

1299 You can order transport ships to help you transport the necessary resources to this factory. After you
order one or more transporters from the shipyard that manufactured this factory, these transport ships
will fly to this factory and work for you.

pg. 100

The X² MSCI Programmer's Handbook

ID # Phrase

1300 Transporter ordered at Shipyard

1301 You can not sell transporters

1302 Transporter removed

1303 You can order fighter ships that will help to protect your factory. After you order one or more fighters
from the shipyard that manufactured this factory, these fighters will fly to this factory and protect it.

1304 Fighter ordered at Shipyard

1305 You can not sell fighters

1306 Fighter removed

1307 Target locked on

1308 Target on

1310 Not functional in playable demo

1311 Not available in playable demo

1312 This demo will time out in t minus one minute

1313 Cheat Mode enabled

1319 Jump device charging at 10%...20...30...40...50%...60...70...80...90...Jumping...

1320 Shields

1321 Laser

1322 Ship Hull

1323 critical

1332 Receiving upgrade information for database

1333 Incoming message

1334 from

1339 Credits received

1340 We are being hailed

1341 scanning

1342 This object is owned by you

1350 System Check

1351 Alert. Ship systems malfunctioning. System check initiated.

1352 working

1353 broken

1354 not working

1355 out of order

1356 not responding

1357 malfunction

1358 Conventional Engine

1359 Weapon Systems

1501 Connection to local trading network established.

1502 Successfully docked

5001 Recording started

pg. 101

The X² MSCI Programmer's Handbook

ID # Phrase

5002 Recording stopped

901299 You can specify how many of your own transporter ships should work for this factory.

901302 Transporter without destination will follow you and wait for new instructions.

901303 You can specify how many of your own fighter ships should work for this factory.

901306 Fighter without destination will follow you and wait for new instructions.

1100003 Warning, Proximity Alert

1100014 Boardcomputer ready to receive new command

1100015 New command accepted

1100016 Affirmative

1100017 New homebase accepted

1100018 Attention: One of your factories is under attack

1100019 Attention: One of your ships is under attack

1100020 Attention: One of your factories stopped producing. Check resource and money supply.

1100025 Attention: X2 could not verify the original game CD on start-up. Please make sure you use the correct
CD and restart the game.

1100026 Self destruct sequence initiated

1100027 Attention: X2 executable file has been manipulated

1100039 Station outside autodocking range

1100040 Target outside transporter range. Teleportation impossible.

1100041 Target not your property. Teleportation impossible.

1100042 No wingman available

1100043 No other ships owned by you are currently in this sector

1100044 New Command:

1100045 No fighting droids available

1100046 No mine available

1100047 Attention: Mine detected

1100048 The factory does not have enough credits to buy resources

1100049 The requested ware can not be bought for less than the current price limit.

1100056 Jump device aborted - Not enough energy available

1100065 Welcome aboard

Table 8.5- Speech Samples, page 13 - Miscellaneous Phrases

pg. 102

The X² MSCI Programmer's Handbook

Page 17 – Object, Ship, and Factory Names and Descr iptions

All of the different station, ship, object, and ware names along with their descriptions are in
page 17. The description text is not give here, as there is little use for it in a script. All the
names are given in the following tables which are organized by type:

Stations

ID # Station ID # Station ID # Station

2011 Solar Power Plant 2681 Beta HEPT Forge 4281 Royal Boron Dry-dock

2021 Ore Mine 2691 Gamma HEPT Forge 4381 Split Dockyard

2031 Silicon Mine 2711 Shield Prod. Facility 1MW 4481 Paranid Pier

2041 Weapon Component Factory 2721 Shield Prod. Facility 5MW 4581 Teladi Showroom

2051 Crystal Fab 2731 Shield Prod. Facility 25MW 4621 Ion Disruptor Forge

2061 Quantum Tube Fab 2741 Shield Prod. Facility 125MW 4631 Mobile Drilling System Factory

2071 Chip plant 2811 Mosquito Missile Factory 4671 Alpha PSG Forge

2081 Computer Plant 2821 Wasp Missile Factory 4681 Beta PSG Forge

2141 Wheat Farm 2831 Dragonfly Missile Factory 4691 Gamma PSG Forge

2151 Cattle Ranch 2841 Silkworm Missile Factory 4811 Advanced Satellite Factory

2171 Rimes Fact 2851 Hornet Missile Factory 4871 Alpha PPC Forge

2181 Cahoona Bakery 3101 Federal Argon Shipyard 4881 Beta PPC Forge

2191 Space Fuel Distillery 3181 Free Argon Trading Station 4891 Gamma PPC Forge

2241 Plankton Farm 3191 Argon Equipment Dock 4901 Khaak missile forge - Sting

2251 Bio Gas Factory 3201 Royal Boron Shipyard 4911 Khaak missile forge - Needle

2271 Stott Mixery 3281 Royal Boron Trading Station 4921 Khaak missile forge Thorn

2281 BoFu Chemical Lab 3291 Boron Equipment Dock 4941 Lasertower Weapon Forge

2341 Scruffin Farm 3301 Split Shipyard 4951 Mass Driver Forge

2351 Chelt Space Aquarium 3381 Split Trading Port 4961 Ammunition Factory

2371 Massom Mill 3391 Split Equipment Dock 4971 TerraCorp Headquarters

2381 Rastar Refinery 3401 Paranid Shipyard 4981 TerraCorp Crystal Fab

2441 Soyfarm 3481 Paranid Trading Dock 4991 TerraCorp Computer Plant

2451 Snail Ranch 3491 Paranid Equipment Dock 5001 TerraCorp Solar Power Plant

2471 Space Jewellery 3501 Teladi Shipyard 5011 TerraCorp Wheat Farm

2481 Soyery 3581 Teladi Trading Station 5021 TerraCorp Cattle Ranch

2541 Flower Farm 3591 Teladi Space Equipment Dock 5031 TerraCorp 125MW Shield Prod. Facility

2551 Teladianium foundry 3681 Xenon Shipyard 5041 TerraCorp Quantum Tube Fab

2561 Dream farm 3691 Xenon Station 5061 Federal Argon Installation

2571 Sun oil refinery 3741 Goner Temple 5071 Royal Boron Research Station

2581 Bliss Place 3761 Pirate Anarchy Port 5081 Paranid Communications Facility

2611 Alpha IRE Forge 3781 Pirate Base 5111 Argon Merchant Scrapyard

2621 Beta IRE Forge 3891 Satellite Factory 5121 Boron Ship Reclamation Yard

2631 Gamma IRE Forge 3911 SQUASH Mine Factory 5131 Split Scrap Merchants

2641 Alpha PAC Forge 3921 Lasertower Factory 5141 Paranid Salvage Merchants

2651 Beta PAC Forge 3931 Drone Factory 5151 Teladi Company Scrap Dealers

2661 Gamma PAC Forge 4181 Federal Argon Wharf 9021 Unknown Enemy Station

2671 Alpha HEPT Forge

Table 8.6 - Speech Samples, page 17 - Station Names

pg. 103

The X² MSCI Programmer's Handbook

Wares & Upgrades

ID# Ware ID# Ware ID# Ware

2013 Energy Cells 2633 Gamma Impulse Ray Emitter 4893 Gamma Photon Pulse Cannon

2023 Ore 2643 Alpha Particle Accelerator Cannon 4903 Sting

2033 Silicon Wafers 2653 Beta Particle Accelerator Cannon 4913 Needle

2043 Warheads 2663 Gamma Particle Accelerator Cannon 4923 Thorn

2053 Crystals 2673 Alpha High Energy Plasma Thrower 4943 Lasertower Weapon

2063 Quantum Tubes 2683 Beta High Energy Plasma Thrower 4953 Mass Driver

2073 Microchips 2693 Gamma High Energy Plasma Thrower 4963 Mass Driver Ammunition

2083 Computer Components 2713 1 MW Shield 5203 Artifacts

2093 Salvage Insurance 2723 5 MW Shield 5213 Artificial Fertilizer

2103 Argon law enforcement license 2733 25 MW Shield 5223 Biological Micro-Organisms

2133 Engine Tuning 2743 125 MW Shield 5233 Cartography Chips

2143 Delexian Wheat 2753 Mineral Scanner 5243 Construction Equipment

2153 Argnu beef 2763 Freight scanner 5253 Engine Components

2163 Ecliptic projector 2773 Trading system extension 5263 Entertainment Chips

2173 Cloth Rimes 2813 Mosquito Missile 5273 Food Rations

2183 Meatsteak Cahoonas 2823 Wasp Missile 5283 Hand Weapons

2193 Space Fuel 2833 Dragonfly Missile 5293 Luxury Foodstuffs

2203 Boron law enforcement license 2843 Silkworm Missile 5303 Medical Equipment

2213 Motion Analysis Relay System 2853 Hornet Missile 5313 Mining Equipment

2243 Plankton 2923 Baluga missile 5323 Nividium

2253 BoGas 2933 Alpha missile 5333 Radioactive Waste

2263 SETA boost extension 3883 Slaves 5343 Teladianium Panelling

2273 Stott Spices 3893 Navigation Relay Satellite 5353 Water

2283 BoFu 3903 Best Selling Price Locator 5363 Weapon Interface Chips

2303 Split police license 3913 SQUASH Mine 5373 Narcotics

2313 Singularity Engine Time Accelerator 3923 Lasertower 5383 Super Slave Chips

2343 Scruffin Fruits 3933 Fighter Drone 5393 Spacefly Eggs

2353 Chelts Meat 3943 Cargo Life Support System 5403 Pirate Sidearms

2373 Massom powder 3953 Boost Extension 5413 Hackerchips

2383 Rastar Oil 3963 Strafe Drive Extension 5423 Military Personnel

2393 Spaceflies 3973 Transporter Device 5433 Passengers

2403 Paranid police license 3983 Jumpdrive 5443 Very Important Passengers

2413 Docking computer 3993 Best Buys Locator 5453 Duplex Scanner

2423 Video Enhancement Goggles 4623 Ion Disruptor 5463 Triplex Scanner

2443 Soja Beans 4633 Mobile Drilling System 5543 TRACKER Mine

2453 Maja Snails 4643 Alpha Kyon Emitter 5603 Red Crystal

2463 Rudder Optimisation 4653 Beta Kyon Emitter 5623 Green Crystal

2473 Majaglit 4663 Gamma Kyon Emitter 5633 Yellow Crystal

2483 Soja Husk 4673 Alpha Phased Shockwave Generator 5643 Transparent Crystal

2503 Teladi company security license 4683 Beta Phased Shockwave Generator 5653 Black Crystal

2513 Cargo bay extension 4693 Gamma Phased Shockwave Generator 5663 Glowing Crystal

2543 Sunrise Flowers 4803 Camera Drone 5673 Navigation Command Software MK1

2553 Teladianium 4813 Advanced Satellite 5683 Trade Command Software MK1

pg. 104

The X² MSCI Programmer's Handbook

ID# Ware ID# Ware ID# Ware

2563 Swamp Plant 4823 Ore Collector 5693 Trade Command Software MK2

2573 Nostrop Oil 4833 Camouflage Device 5713 Fight Command Software MK1

2583 Space weed 4863 Spacefly Collector 5723 Fight Command Software MK2

2613 Alpha Impulse Ray Emitter 4873 Alpha Photon Pulse Cannon 5733 Special Command Software MK1

2623 Beta Impulse Ray Emitter 4883 Beta Photon Pulse Cannon 5873 Trade Command Software MK3

Table 8.7 - Speech Samples, Page 17 – Wares & Upgrades

Ships

ID# Ship ID# Ship ID# Ship

3111 Argon Colossus 3571 Teladi Vulture 4231 Boron Barracuda

3121 Argon Titan 3611 Xenon J 4241 Boron Mako

3141 Argon Buster 3621 Xenon K 4261 Boron Manta

3151 Argon Discoverer 3631 Xenon L 4311 Split Dragon

3161 Argon Mammoth 3641 Xenon M 4351 Split Jaguar

3211 Boron Shark 3651 Xenon N 4361 Split Iguana

3221 Boron Ray 3661 Xenon I 4371 Split Caiman

3251 Boron Octopus 3671 Xenon H 4411 Paranid Nemesis

3261 Boron Orca 3771 Pirate Ship 4441 Paranid Pericles

3271 Boron Dolphin 3811 Pirate Orinoco 4461 Paranid Hermes

3281 Royal Boron Trading Station 3821 Pirate Bayamon 4471 Paranid Demeter

3291 Boron Equipment Dock 3831 Pirate Mandalay 4511 Teladi Osprey

3311 Split Raptor 3841 Navigation Relay Satellite 4541 Teladi Buzzard

3321 Split Python 3851 SQUASH Mine 4551 Teladi Harrier

3331 Split Mamba 3861 Lasertower 4561 Teladi Toucan

3341 Split Scorpion 3871 Fighter drone 4731 Xperimental Shuttle

3361 Split Elephant 4011 Khaak Carrier 4741 Space Suit

3381 Split Trading Port 4021 Khaak Destroyer 4751 Goner Ship

3391 Split Equipment Dock 4031 Khaak Fighter 4771 Camera Drone

3401 Paranid Shipyard 4041 Khaak Interceptor 4931 Paranid Perseus

3411 Paranid Zeus 4051 Khaak Scout 5051 Navigational Beacon

3421 Paranid Odysseus 4061 Khaak Cluster 5091 Argon One

3451 Paranid Pegasus 4081 Khaak Station 5501 Saiien II

3461 Paranid Hercules 4111 Argon Centaur 5511 Nikkonofune

3471 Paranid Ganymede 4131 Argon Nova 5521 Blue Arrow

3511 Teladi Condor 4161 Argon Express 5543 TRACKER Mine

3521 Teladi Phoenix 4171 Argon Mercury 5581 Pyramid Income

3531 Teladi Falcon 4211 Boron Hydra 5591 Saiien III

3561 Teladi Albatross

Table 8.8 - Speech Samples, Page 17 - Ship Types

pg. 105

The X² MSCI Programmer's Handbook

A.4A.4A.4A.4 Default Start Actions Default Start Actions Default Start Actions Default Start Actions

All ships have a default command that is executed on them when they are newly created. What
this command is depends on the the ship's class. The following table lists all the default start
actions are for each class:

Class Default Start Action

M0 COMMAND_KILL_ENEMIES

M1 COMMAND_KILL_ENEMIES

M2 COMMAND_KILL_ENEMIES

M6 COMMAND_KILL_ENEMIES

M3 If player-owned, COMMAND_NONE. If ship has a leader, COMMAND_PROTECT protect it. If
ship is being attacked, COMMAND_ATTACK on its attacker. If ship is a Xenon, Pirate, or Khaak,
COMMAND_KILL_ENEMIES. Otherwise, COMMAND_RETURN_HOME

M4 If player-owned, COMMAND_NONE. If ship has a leader, COMMAND_PROTECT protect it. If
ship is being attacked, COMMAND_ATTACK on its attacker. If ship is a Xenon, Pirate, or Khaak,
COMMAND_KILL_ENEMIES. Otherwise, COMMAND_RETURN_HOME

M5 If player-owned, COMMAND_NONE. If ship has a leader, COMMAND_PROTECT protect it. If
ship is being attacked, COMMAND_ATTACK on its attacker. If ship is a Xenon, Pirate, or Khaak,
COMMAND_KILL_ENEMIES. Otherwise, COMMAND_RETURN_HOME

TS If player-owned, COMMAND_NONE. If a home is set, COMMAND_RETURN_HOME.
Otherwise, COMMAND_DOCKAT the nearest shipyard.

GO If player-owned, COMMAND_NONE. Otherwise, COMMAND_PREACH.

UFO COMMAND_PREACH

SPACEFLY COMMAND_FOLLOW

All others COMMAND_NONE

Table 8.9 - Default start actions

pg. 106

T
h

e
X

²
M

S
C

I
P

ro
g

ra
m

m
er

's
 H

an
d

b
o

o
k

A
.5

A
.5

A
.5

A
.5

O
b
j
e
c
t

H
ie
r
a
r
c
h
y

O
b
j
e
c
t

H
ie
r
a
r
c
h
y

O
b
j
e
c
t

H
ie
r
a
r
c
h
y

O
b
j
e
c
t

H
ie
r
a
r
c
h
y

A
ll

 o
b

je
ct

s
th

at
 c

an
 b

e
m

an
ip

u
la

te
d

 i
n

 s
cr

ip
ti

n
g

 b
el

o
n

g
 t

o
 a

 c
la

ss
.

 E
ac

h
 c

la
ss

 c
an

 a
ls

o
 i

ts
el

f
b

e
a

m
em

b
er

 o
f

an
o

th
er

 c
la

ss
,

an
d

 s
o

 o
n

.
 A

ll
 c

la
ss

es
 “

d
er

iv
e”

 f
ro

m
 t

he
 m

os
t

b
as

ic
 o

n
e

 c
al

le
d

“O
b

je
ct

”.

T
h

e
fo

ll
o

w
in

g
 c

h
ar

t
il

lu
st

ra
te

s
th

e
h

ie
ra

rc
h

y
 o

f
cl

as
se

s
th

at
 a

ll
 o

b
je

ct
s

fa
ll

 u
n

d
er

:

p
g

.
1

0
7

Il
lu

st
ra

ti
o

n
 8

.1
 -

 O
b

je
ct

 C
la

ss
 H

ie
ra

rc
h

y

Object

Ship Station

Movable
Ship

Stationary
Ship

Special
Ship

Little
Ship

Big
Ship

Fighter TS
Transport

TS
Transport

TP
Transport

M3
Fighter

M4
Fighter

M5
Fighter

Carrier

M1
Battleship

M2
Destroyer

M6
Cruiser

TL
Transport

Orbital
Laser

Nav
Satellite

Nav
Sattelite II

SpaceFly

Dock Factory

SQUASH
Mine

Astronaut
Flight
Drone

UFO

Shipyard

Small
Shipyard

Big
Shipyard

Goner
Dock

Pirate
Dock

Museum
Dock

Equipment
Dock

Trade
Dock

Khaak
Dock

Asteroid
Ware in
Space

Warp
Gate

Sector

The X² MSCI Programmer's Handbook

A.6A.6A.6A.6 Search Flags Search Flags Search Flags Search Flags

There are five general-purpose searching instructions (some with more than one variant) that
have a parameter called 'flags'. This parameter allows you to control the scope of the search.
The flags are available in the “Select Constant” menu in the script editor and are listed below:

Flag Value Description Applies to:

Find.IllegalWare 0x00800000 Find illegal wares find flying ware

Find.Random 0x01000000 Choose a single item from all that match
the search parameters

All

Find.Nearest 0x02000000 Choose the item closest to refobj single
item from all that match the search
parameters

All

Find.ExactJumps 0x04000000 Choose a result that is exactly
<maxjumps> number of jumps away – no
more, no less

find station in
galaxy

Find.Enemy 0x08000000 Filter out all except enemies from the list
unless Find.Neutral and/or Find.Friend
are also specified

All

Find.Neutral 0x10000000 Filter out all except neutral (all that are
not enemies and are not owned by the
player) unless Find.Enemy and/or
Find.Friend are also specified

All

Find.Friend 0x20000000 Filter out all except friends (player-
owned) unless Find.Enemy and/or
Find.Neutral are also specified

All

Find.Multiple 0x40000000 Allows multiple results – the instruction
returns an array

All except find
station in
galaxy

Find.TypeAsWareCategorie 0x80000000 Not used Not used

Table 8.10 - Search Flags

Not all flags can be used with all the instructions. See the “Applies to” column to determine
what the restrictions are for any particular flag.

To use more than one flag in a search, OR them together as shown:

100 $SearchFlags = [Find.Enemy] | [Find.Multiple]

pg. 108

The X² MSCI Programmer's Handbook

A.7A.7A.7A.7 Asteroid Types Asteroid Types Asteroid Types Asteroid Types

There are ten different styles of asteroid that the create asteroid instruction can produce. All
are shown below pictured with a Teladi Albatross for size comparison. Full-size images are
available in the companion files to this book.

Table 8.11 - Asteroid Types

pg. 109

The X² MSCI Programmer's Handbook

A.8A.8A.8A.8 Nebula Types Nebula Types Nebula Types Nebula Types

There are 13 types of nebulae that the create nebula instruction can produce. All are shown
below pictured with a Teladi Albatross for size comparison. Full-size images are available in
the companion files to this book.

0. White gas, long, with storms
1. Small red, no storms
2. White gas, long, no storms
3. Red, multiple parts, with storms
4. Large white, no storms
5. Blue & white, multiple areas, no

storms
6. White swirls, red area contains

storms

7. Huge purple, with storms
8. Large white swirls with red,

with storms
9. Long bright blue, no storms
10. Large teal, with storms
11. Large teal, with storms
12. Small red, with storm

Table 8.12 - Nebula Types

pg. 110

The X² MSCI Programmer's Handbook

A.9A.9A.9A.9 Sun Subtypes Sun Subtypes Sun Subtypes Sun Subtypes

There are 25 types of suns that create sun the instruction can produce. All are shown below.
Full-size images are available in the companion files to this book.

pg. 111

The X² MSCI Programmer's Handbook

Table 8.13 - Sun Subtypes

pg. 112

The X² MSCI Programmer's Handbook

A.10A.10A.10A.10 Planet Subtypes Planet Subtypes Planet Subtypes Planet Subtypes

There are 17 types of planets that the create planet instruction can produce. All are shown
below pictured with a Teladi Albatross for size comparison. Full-size images are available in
the companion files to this book.

pg. 113

The X² MSCI Programmer's Handbook

Table 8.14 - Planet Subtypes

pg. 114

The X² MSCI Programmer's Handbook

A.11A.11A.11A.11 """"SpecialSpecialSpecialSpecial"""" Object types Object types Object types Object types

There are 74 types of special objects that can be produced with the create special instruction.
Some objects have a spoken “name” that is announced by the on-board computer when they are
targeted. Some do not.

The following chart lists all the objects, whether they or not they can be targeted, and what is
spoken by the on-board computer when they are targeted.

Special Object Descriptions

Type Target Board Computer Description

0 Yes Kessler Ring Kessler Ring

1 Yes Kessler Ring Kessler ring

2 Yes Unknown object Ship part – front of Xenon K

3 Yes Asteroid Asteroid

4 Yes Asteroid Asteroid

5 Yes Unknown object Wall piece from X-Tension station construction animation

6 Yes Unknown object Framing X-Tension station construction animation

7 Yes Unknown object Wall piece from X-Tension station construction animation

8 Yes Unknown object Piece from X-Tension station construction animation

9 Yes Unknown object Shipyard clamshell

10 Yes Unknown object Plating

11 Yes Unknown object Sample sector map

12 Yes Unknown object Post-like object

13 Yes Unknown object Engine housing?

14 Yes Unknown object Translucent debris

15 Yes Unknown object Asteroid with a constructed tunnel

16 Yes Unknown object Gravidar (an actual working copy of your ship's gravidar)

17 Yes Unknown object Kessler ring

18 Yes Unknown object Kessler ring

19 Yes Unknown object Finish line?

20 No Asteroid field

21 No Asteroid field

22 No Asteroid field

23 No Asteroid field

24 Yes Nacelle Gate nacelle

25 Yes Nacelle Gate nacelle

26 Yes Nacelle Gate nacelle

27 Yes Gate Gate wreckage

28 Yes Small asteroid

29 No Unfinished or corrupted model - vertices improperly placed.

30 Yes Ship debris Debris of a Split Dragon (Kyle Brennan's destroyed ship)

31 No Debris

32 No Debris

pg. 115

The X² MSCI Programmer's Handbook

Type Target Board Computer Description

33 No Debris

34 Yes Navigational beacon Navigational beacon

35 No Khaak debris

36 No Debris

37 Yes Unknown object Khaak debris

38 Yes Station debris Destroyed station (President's End)

39 Yes Station debris Destroyed station (President's End)

40 Yes Station debris Destroyed station (President's End)

41 Yes Station debris Destroyed station (President's End)

42 Yes Station debris Destroyed station (President's End)

43 Yes Ship debris Debris of Argon Titan (model takes a very long time to load)

44 Yes Cargo hatch with different details on both sides (two images below)

45 Yes Window

46 Yes Nothing visible

47 Yes Internal tunnel

48 Yes Cargo hatch (same as #44)

49 Yes Ring

50 Yes Tunnel

51 Yes 3d targeting reticle

52 Yes Tunnel

53 Yes Cargo hatch (same as #44)

54 Yes Nothing visible

55 Yes Tunnel

56 Yes Nothing visible

57 Yes Nothing visible

58 Yes Nothing visible

59 Yes Nothing visible

60 Yes Cargo hatch (same on both sides)

61 Yes Translucent purple sphere

62 Yes Nothing visible

63 Yes White cloudy spot - planar

64 Yes Nothing visible

65 Yes Red nav beacon

66 Yes Cargo container

67 Yes Nothing visible

68 Yes Nothing visible

69 Yes Cargo hatch (same as #44)

70 Yes Nothing visible

71 Yes Nothing visible

72 Yes 3d targeting reticle (same as #51)

73 Yes Cargo hatch (same as #44)

Table 8.15 - Description of Special Object Types

pg. 116

The X² MSCI Programmer's Handbook

Special Object Images

Full-size images are available in the companion files to this book.

pg. 117

The X² MSCI Programmer's Handbook

pg. 118

The X² MSCI Programmer's Handbook

pg. 119

The X² MSCI Programmer's Handbook

Table 8.16 - Special Object Type Images

pg. 120

IndexIndexIndexIndex
A
add big ship, instruction...55

add default items to ship, instruction..58

add money to player, instruction..61

add money, instruction...60

add notoriety, instruction...74

add primary resource factory or dock, instruction.............................69

add product to factory or dock, instruction.....................................69

add secondary resource factory or dock, instruction..........................69

add to formation with leader, instruction..49

add ware, instruction...61

al engine: register, instruction...41

al engine: set plugin description, instruction....................................41, 86
al engine: set plugin timer interval, instruction................................41, 86
al engine: unregister, instruction..41

AL plugin..84

append to array, instruction..33

array alloc, instruction...32, 85
array assignment, instruction..32

arrays..19
array instructions...32

atomic operation...82

attack run on target, instruction..46

B
best missile type for target, instruction...53

break, instruction..22, 31

buy ware to max price, instruction...57

buy ware, instruction...56

C
call script, instruction..31, 83, 86
can be controlled by race logic, instruction......................................56

can execute StartAction, instruction...56

can sell ware, instruction..59

can transport ware, instruction..58

catch ware object, instruction..47

check, select and fire missile, instruction..55

Clear Debug Messages, menu item..8
clone array, instruction..32

command...5
command script...5
concurrency..79
connect ship command/signal, instruction.......................................36

continue, instruction...22, 31

cooperative multitasking..80
copy array, instruction...32

create asteroid, instruction...69

create flying ware, instruction...73

create gate, instruction...68

create nebula, instruction...69

create planet, instruction..69

create sector object, instruction...73

create ship, instruction...68

create special, instruction...69

create station, instruction...68

create sun, instruction..69

D
data types...18

debugging..25
debugging..

Clear Debug Messages, menu entry..8
Script Debugger Menu, menu entry...8
Script Debugging, menu entry..8

dec, instruction...34, 81
decouple ships, instruction..54

defensive move, instruction..46

define label, instruction..31

destruct, instruction..72

E

else, instruction..31, 40
enable signal/interrupt handling, instruction...................................36

end, instruction..5, 31, 33, 40
escort ship, instruction...47

exists SectorObject, instruction...72

exists, instruction..63

expressions...33

F
find asteroid, instruction..70
find best missile for target, instruction..53

find enemy in firing range of turret, instruction...............................53

find flying ware, instruction..70
find nearest enemy ship, instruction..45

find nearest enemy station, instruction..45

find nearest missile aiming at me, instruction...................................54

find random sector, instruction..76

find ship, instruction..70
with homebase...75

find station (product|resource|sells resource), instruction...................61

find station in galaxy, instruction..64
multiple stations..75

find station, instruction...71

fire lasers on target, instruction...45

fire missile, instruction...53

fits laser into turret, instruction..54

fly to home base, instruction...44

fly to sector, instruction..45

fly to station, instruction..44

follow object, instruction..49

free sector object, instruction..73

G
get amount of ware in cargo bay, instruction...................................40, 60

get asteroid array, instruction..77

get attack target, instruction...50

get average price of ware, instruction...59

get best store amount of ware, instruction.......................................59

get cargo bay size, instruction..57

get command target, instruction..51

get command target2, instruction..52

get command, instruction...51

get current galaxy flight timestep, instruction..................................55

get current laser strength, instruction...65

get current missile, instruction..53

get current shield strength, instruction...65

get datatype, instruction..38

get destination, instruction...50

get distance between, instruction...67

get distance to, instruction..67

get dock array, instruction..76

get dock bay size, instruction...74

get environment, instruction...63

get factory array, instruction...76

get follow mode, instruction..50

get formation follower ships, instruction...49

get formation leader, instruction..49

get free amount of ware in cargo bay, instruction.............................60

get free volume of cargo bay, instruction...57

get free volume of ware in cargo bay, instruction..............................58

get global variable, instruction..41, 85
get homebase, instruction...63

get hull percent, instruction..74

get hull, instruction...74

get id code, instruction...75

get jumps from sector to sector, instruction......................................64

get khaak aggression level, instruction..42

get laser type in bay, instruction...66

get laser type in turret, instruction...54

get local variable, instruction..40, 82, 83
get maintype of ware, instruction..62

get maintype, instruction..62

get max amount of ware that can be stored in cargo bay, instruction....60

get max hull, instruction..74

get max laser strength in turret, instruction.....................................65

get max missile type that can be installed, instruction........................65

get max number of lasers in turret, instruction................................54

get max sectors in x/y direction, instruction.....................................76

get max shield type that can be installed, instruction.........................65

get max speed, instruction..74

get max store amount of ware, instruction......................................59

get max trade jumps, instruction..60

get max upgraded speed, instruction...74

get max upgrades for upgrade, instruction.......................................74

get max ware transport class, instruction..57

get maximum laser strength, instruction...65

get maximum shield strength, instruction..65

get min|max|average price of ware, instruction.................................62

get missile fire probability, instruction..54

get missile fire time difference, instruction.......................................54

get money, instruction..60

get name, instruction...75

get next sector on route, instruction...65

get north|south|east|west warp gate, instruction...............................76

get notoriety from race to race, instruction......................................66

get notoriety to race, instruction...66

get number of landed ships, instruction..74

get number of laser bays, instruction..65

get number of primary resources, instruction...................................59

get number of resources, instruction..59

get number of secondary resources, instruction................................59

get number of shield bays, instruction..65

get number of subtypes of maintype, instruction.............................62

get number of turrets, instruction..54

get object class, instruction...63

get object from SectorObject, instruction..72

get owner race, instruction...63

get pid, instruction..36

get pilot name, instruction..75

get player money, instruction...61

get player owned ship array, instruction..77

get player owned station array, instruction......................................77

get player ship, instruction..68

get position as array, instruction..68

get price of ware, instruction..59

get product ware, instruction..59

get random name, instruction..42

get range of missile, instruction..54

get relation to object, instruction...66

get relation to race, instruction...66

get rot alpha|beta|gamma, instruction..73

get script command target, instruction...38

get script command upgrade, , instruction.......................................37

get script command, instruction..37

get script name, instruction...41

get script priority, instruction...34

get script version, instruction..41, 85
get sector from universe index, instruction.......................................76

get sector, instruction..63, 64
get SectorObject ID, instruction..72

get serial name of station, instruction..64

get shield and hull percent, instruction...74

get shield percent, instruction...74

get shield type in bay, instruction...66

get ship array, instruction...76

get size of object, instruction..74

get station array, instruction...76

get subtype of ware, instruction..62

get subtype, instruction..62

get tactical, instruction..52

get task ID, instruction..36

get total volume in cargo bay, instruction..58

get tradeable ware array from station, instruction............................60

get transport class of ware, instruction...61

get true amount of ware in cargo bay, instruction.............................60

get true volume of ware in cargo bay, instruction.............................58

get universe x/y index, instruction..76

get volume of ware in cargo bay, instruction....................................57

get volume of ware, instruction...61

get wanted ware count, instruction..58

get wanted ware, instruction...58

get ware from maintype and subtype, instruction..............................62

get ware type code of object, instruction...63

get ware type of SectorObject, instruction......................................72

get warp gate, instruction...76

get x|y|z position, instruction..68

give formation leadership, instruction...52

global script map, instruction..82
global script map: remove key, instruction.......................................37

global script map: set key, instruction...37

Global Script Tasks, menu item..8
goto, instruction...23, 31

H
has a free big ship dock slot, instruction..56

has formation ships, instruction...52

has illegal ware onboard, instruction..58

has same environment as, instruction..66

I
if, instruction...20, 33, 82, 85
ignore ship command/signal, instruction...36

inc, instruction...33

infinite loop detection enabled, instruction......................................39

init scripts..11

insert into array, instruction...32

install ware, instruction...61

instruction...5
interrupt task, instruction..35

interrupt with script (no arguments), instruction.............................36

interrupt with script, instruction...36, 81
interrupts..80

interrupts..
interrupt task..35
interrupt with script...36
is signal/interrupt handling on...37

is a enemy, instruction..66

is a friend, instruction..66

is datatype, instruction...38

is decoupled ships leader, instruction..54

is disabled, instruction...71

is docked, instruction...67

is docking allowed, instruction..67

is docking possible, instruction..67

is in a sector, instruction...67

is in firing range of turret, instruction...52

is in same sector as, instruction..67

is landed, instruction...67

is landing, instruction..55

is missile ready to fire, instruction..53

is neutral to me, instruction..66

is of class, instruction..63

is of type, instruction..64

is player wingman, instruction..56

is plot state flag, instruction..41

is script with prio on stack, instruction...35

is sector known by the player, instruction..76

is signal/interrupt handling on, instruction.....................................37

is starting, instruction...55

is ware illegal, instruction..62

K
kill sector object, instruction...73

L
launch fight drones, instruction...53

load text, instruction...39

load ware, instruction..57

M
move around, instruction..47

move to position, instruction...51

move to ware object, instruction..46

N
needed jumpdrive energy for jump, instruction.................................55

O
only player owned ships can trade with, instruction..........................60

P
parameter..6
play sample, instruction...42

play sample: incoming transmission, instruction...............................42

player loses police license, instruction...74

playing time, instruction..39

plugin...5
processes..78

put into environment, instruction..75

R
random value, instruction...34

read text, instruction...38

Reinit Script Caches, menu item...8, 87
remove element from array, instruction...33

remove from any formation, instruction..49

remove primary resource from factory or dock, instruction.................69

remove product from factory or dock, instruction.............................69

remove secondary resource from factory or dock, instruction..............69

resize array, instruction..33

return, instruction...32, 40

S
script...5
Script Debugger Menu, menu item...8
Script Debugging, menu item..8
Script Editor, menu item..7
script engine version, instruction...34

select new formation leader, instruction..52

sell ware, instruction..57

send audio message, instruction...42

send incoming message to player, instruction...................................43

send signal, instruction..49

set as player wingman, instruction...56

set attack target, instruction...50

set attacker to, instruction..67

set command target, instruction...51

set command target2, instruction...52

set command, instruction..51
with target, target2, par1, and par2..53

set destination, instruction...50

set follow mode, instruction..50

set formation, instruction...48

set global variable, instruction..40, 86
set homebase, instruction..65

set khaak aggression level, instruction..42

set local variable, instruction..40, 82, 83
set missile fire probability, instruction..54

set missile fire time difference, instruction..54

set name, instruction..75

set owner race, instruction..75

set pilot name, instruction..75

set pilot speaker, instruction..75

set position of sector object, instruction...72

set position, instruction...72

set price of ware, instruction...59

set race logic control enabled, instruction..56

set relation, instruction..68

set rotation of sector object, instruction...73

set rotation, instruction...72

set safe position of sector object, instruction...................................72

set script command target, instruction..38

set script command upgrade, instruction...37
with check script..39

set script command, instruction...37, 79
set script priority, instruction..35

set serial name of station, instruction...64

set ship command/signal to global default behaviour, instruction........36

set ship disabled, instruction...75

set StartAction enabled, instruction...56

set state of news article, instruction...39

set tactical, instruction...52

set wanted ware count, instruction...58

set wanted ware, instruction..58

setup scripts...11, 29, 87
should a missile be fired, instruction...53

signals...81
connect ship command/signal...36
default handler scripts...81
enable signal/interrupt handling...36
global script map...37
ignore ship command/signal...36
is script with prio on stack...35
is signal/interrupt handling on...37
send signal..49
set ship command/signal to global default behaviour..................36

size of array, instruction..32, 81
skip if, instruction...20
speak text, instruction..43

sprintf, instruction..38, 86
START command, instruction...49

start sector object, instruction...73

start task, instruction..35, 79, 89
state of news article, instruction..39

statement...5
station send defend squad, instruction..75

station trade and production tasks, instruction................................71

switch laser in turret, instruction...58

syntax...6
system date is, instruction...39

T
tasks...78

trades with ware, instruction...59

turn turret, instruction..45

U
unload ware, instruction..57

use jumpdrive, instruction..55

uses ware as primary resource, instruction.......................................59

uses ware as secondary resource, instruction.....................................59

V
variables..17

assignment..33

W
wait randomly, instruction..34, 89
wait, instruction...5, 34, 79, 80, 82
while, instruction..5, 21, 33, 80, 81
write to logfile, instruction...44

write to player logbook, instruction...43

X
x2tool...10

	1.About This Manual
	1.1 Acknowledgements
	1.2 Example Code
	1.3 Terminology
	1.4 Parameters and Syntax
	[skip] if [not]|while [not]|<retvar> = <arrayvar>[<element>]

	1.5 Companion Files

	2.Introduction
	2.1 Overview
	2.2 Enable Scripting
	2.3 Scripting Menu
	Script Editor
	Reinit Script Caches
	Script Debugging
	Clear Debug Messages
	Script Debugger Menu
	Global Script Tasks

	3.Viewing and Editing Scripts
	3.1 Viewing Scripts
	Viewing Scripts You Write
	Viewing the Included Scripts

	3.2 Script Structure
	Name
	Version
	Description
	Arguments
	Source Text

	3.3 Script Line Structure
	3.4 First Script

	4.Scripting Fundamentals
	4.1 Variables
	Table 4.1 - Data Types

	4.2 Arrays
	4.3 Conditional Instructions
	IF Blocks
	Skip IF
	Building a Conditional Instruction
	Table 4.2 - Conditional Prefixes

	Null – the Special Condition

	4.4 Loops
	Table 4.3 - Looping Prefixes

	4.5 Flow Control
	Continue & Break
	Goto

	4.6 Look to Examples

	5.Script Interface
	5.1 Debugging Scripts
	Built-In Debugger
	Logging

	5.2 Scripts as Commands
	Command Scripts
	XML Language File
	Table 5.1 - Additional command slots

	Setup Script

	6.Reference
	6.1 General (Flow Control)
	end (conditional)
	else
	continue
	break
	goto <label>
	define label <label>

	6.2 General (Script Calls)
	@8 [START|[skip|else] if [not]|while [not]|<retvar> =] <object pointer> -> call script <scriptname> [<parameter>=<value>] [...]
	return null|<value>

	6.3 General (Arrays)
	<variable> = array alloc: size=<size>
	[skip] if [not]|while [not]|<retvar> = <arrayvar>[<element>]
	<arrayvar>[<element>] = <value>
	[[skip|else] if [not]|while [not]|<retvar> =] size of array <array>
	<newarray> = clone array <sourcearray> :index <startelement> ... <endelement>
	copy array <sourcearray> index <startelement> ... <endelement> into array <destarray> at index <destelement>
	insert <value> into array <array> at index <element>
	append <value> to array <array>
	remove element from array <array> at index <element>
	resize array <array> to <size>

	6.4 General
	[[skip|else] if [not]|while [not]|<retvar>=] [<variable>|<constant>|<operator>|<value>] [...]
	inc <variable>
	dec <variable>
	@ [[skip|else] if [not]|while [not]|<retvar>=] wait <milliseconds> ms
	@ [[skip|else] if [not]|while [not]|<retvar>=] wait randomly from <leasttime> to <mosttime> ms
	<random> = random value from 0 to <maximum> - 1
	<random> = random value from <minimum> to <maximum> - 1
	* <comment>
	<version> = script engine version
	<priority> = get script priority
	set script priority to <priority>
	[skip|else] if [not]|while [not]|<retvar>= is script with prio <priority> on stack
	<object> -> start task <taskID> with script <scriptname> and prio <priority>: arg1=<value1> arg2=<value2> arg3=<value3> arg4=<value4> arg5=<value5>
	<object> -> interrupt task <taskID> with script <scriptname> and prio <priority>: arg1=<value1> arg2=<value2> arg3=<value3> arg4=<value4> arg5=<value5>
	<object> -> interrupt with script <scriptname> and prio <priority>: arg1=<value1> arg2=<value2> arg3=<value3> arg4=<value4>
	[skip|else] if [not]|while [not]|<retvar>= get task ID
	[skip|else] if [not]|while [not]|<retvar>= get pid
	<object> -> interrupt with script <scriptname> and prio: <priority>
	<object> -> connect ship command/signal <commandorsignal> to script <scriptname> with prio <priority>
	<object> -> set ship command/signal <commandorsignal> to global default behaviour
	<object> -> ignore ship command/signal <commandorsignal>
	enable signal/interrupt handling: [TRUE]|[FALSE]
	[skip|else] if [not]|while [not]|<retvar>= is signal/interrupt handling on
	global script map: set key <commandorsignal>, class=<class>|null, race=<race>|null, script=<scriptname>, prio=<priority>
	global script map: remove key <commandorsignal>, class=<class>|null, race=<race>|null
	global script map: ignore key <commandorsignal>, class=<class>|null, race=<race>|null
	set script command upgrade: command=<commandorsignal>, upgrade=<ware>
	<ware> = get script command upgrade: command=<commandorsignal>
	set script command: <commandorsignal>
	[skip|else] if [not]|while [not]|<retvar>= get script command
	set script command target: <target>
	[skip|else] if [not]|while [not]|<retvar>= get script command target
	<retvar> = get datatype[<value>]
	[skip|else] if [not]|while [not]|<retvar>= is datatype[<value>]==<datatype>
	<retvar> = read text: page=<pageid> id=<textid>
	<retvar> = sprintf: fmt=<format>, <value1>, <value2>, <value3>, <value4>, <value5>
	<retvar> = sprintf: pageid=<pageid> textid=<textid>, <value1>, <value2>, <value3>, <value4>, <value5>
	load text: id=<languagefileid>
	[skip|else] if [not]|while [not]|<retvar>= state of news article: page=<pageid> id=<textid>
	set state of news article: page=<pageid> id=<textid> to [TRUE]|[FALSE]
	[skip|else] if [not]|while [not]|<retvar>= system date is month=<month>, day=<day>
	<retvar> = playing time
	infinite loop detection enabled=[TRUE]|[FALSE]
	set script command upgrade: command=<commandorsignal>, upgrade=<ware> script=<scriptname>
	set local variable: name=<varname> value=<value>
	[skip|else] if [not]|while [not]|<retvar>= get local variable: name=<varname>
	set global variable: name=<varname> value=<value>
	[skip|else] if [not]|while [not]|<retvar>= get global variable: name=<varname>
	al engine: register script=<scriptname>
	al engine: unregister script=<scriptname>
	al engine: set plugin <pluginname> description to <description>
	al engine: set plugin <pluginname> timer interval to <interval>s
	<retvar> = get script version
	<retvar> = get script name
	[skip|else] if [not]|while [not]|<retvar>= is plot <plotnum> state flag <plotstate>
	<retval> = get random name: race=<race>
	<retval> = get khaak aggression level
	set khaak aggression level to <level>

	6.5 Audio Commands
	play sample <samplenumber>
	play sample: incoming transmission <transmissiontype>, from object <source>
	Table 6.4 - Incoming Message Constants
	<object> -> send audio message <messagetype> to player
	Table 6.5 - Audio Messages
	send incoming message <message> to player: display it=[TRUE]|[FALSE]
	[START|[skip|else] if [not]|while [not]|<retvar>=] speak text: page=<pagenum> id=<idnum> priority=<priority>

	6.6 Logbook Commands
	write to player logbook <value>
	write to player logbook: printf: fmt=<format>, <value1>, <value2>, <value3>, <value4>, <value5>
	write to player logbook: printf: pageid=<pageid> textid=<textid>, <value1>, <value2>, <value3>, <value4>, <value5>
	<object> -> write to player logbook <value>
	write to logfile #<lognumber> append=[TRUE]|[FALSE] value=<value>
	write to logfile #<lognumber> append=[TRUE]|[FALSE] printf: fmt=<format>, <value1>, <value2>, <value3>, <value4>, <value5>
	write to logfile #<lognumber> append=[TRUE]|[FALSE] printf: pageid=<pageid> textid=<textid>, <value1>, <value2>, <value3>, <value4>, <value5>

	6.7 Fly Commands
	[skip|else] if [not]|while [not]|<retvar>= <ship> -> fly to home base
	[skip|else] if [not]|while [not]|<retvar>= <ship> -> fly to station <station>
	[skip|else] if [not]|while [not]|<retvar>= <ship> -> fly to sector <sector>
	[skip|else] if [not]|while [not]|<retvar>= <object> -> find nearest enemy ship: max.dist=<distance>
	[skip|else] if [not]|while [not]|<retvar>= <object> -> find nearest enemy station: max.dist=<distance>
	[skip|else] if [not]|while [not]|<retvar>= <object> -> fire lasers on target <target> using turret <turretid>
	@ [skip|else] if [not]|while [not]|<retvar>= <object> -> turn turret <turretid> to target <target>: timeout=<timeout>ms
	@ [skip|else] if [not]|while [not]|<retvar>= <ship> -> attack run on target <target>: timeout=<timeout>ms
	@ [skip|else] if [not]|while [not]|<retvar>= <ship> -> defensive move: type=<type>, intensity=<intensity>, timeout=<timeout>ms, avoid object=<object>|null
	@ [skip|else] if [not]|while [not]|<retvar>= <ship> -> move to ware object <ware> for collecting: timeout=<timeout>ms
	[skip|else] if [not]|while [not]|<retvar>= <ship> -> catch ware object <ware>
	@ [skip|else] if [not]|while [not]|<retvar>= <ship> -> move around <timeout> ms
	@ [skip|else] if [not]|while [not]|<retvar>= <ship> -> escort ship <target>
	@ [skip|else] if [not]|while [not]|<retvar>= <ship> -> escort ship <target>: timeout=<timeout> ms
	<ship> -> set formation <formation>
	<ship> -> add to formation with leader <leadership>
	<ship> -> remove from any formation
	[skip|else] if [not]|while [not]|<retvar>= <ship> -> get formation leader
	<retvar>= <ship> -> get formation follower ships
	START <object>-> command <command>: arg1=<value1>, arg2=<value2>, arg3=<value3>, arg4=<value4>
	<object> -> send signal <signal>: arg1=<value1>, arg2=<value2>, arg3=<value3>, arg4=<value4>
	@ [skip|else] if [not]|while [not]|<retvar>= <ship> -> follow object <target> with precision <precision> m
	@ [skip|else] if [not]|while [not]|<retvar>= <ship> -> follow object <target> with precision <precision> m : timeout=<timeout> ms
	<object> -> set follow mode [TRUE]|[FALSE]
	[skip|else] if [not]|while [not]|<retvar>= <ship> -> get follow mode
	<ship> -> set destination to <destination>
	[skip|else] if [not]|while [not]|<retvar>= <ship> -> get destination
	<ship> -> set attack target to <target>
	[skip|else] if [not]|while [not]|<retvar>= <ship> -> get attack target
	@ [skip|else] if [not]|while [not]|<retvar>= <ship> -> move to position x=<xcoordinate> y=<ycoordinate> z=<zcoordinate> with precision <precision> m
	<object> -> set command <command>
	[skip|else] if [not]|while [not]|<retvar>= <object> -> get command
	<object> -> set command target <target>
	[skip|else] if [not]|while [not]|<retvar>= <object> -> get command target
	<object> -> set command target2 <target2>
	[skip|else] if [not]|while [not]|<retvar>= <object> -> get command target2
	<retvar>= <ship> -> select new formation leader by: ship class=[TRUE]|[FALSE] strength=[TRUE]|[FALSE] min.speed=[TRUE]|[FALSE]
	[skip|else] if [not]|while [not]|<retvar>= <ship> -> has formation ships
	<retvar>= <ship> -> give formation leadership to <newleader>
	<ship> -> set tactical to <number>
	<retvar>= <ship> -> get tactical
	[skip|else] if [not]|while [not]|<retvar>= <ship> -> is <target> in firing range of turret <turretnum>
	<retvar>= <ship> -> find enemy in firing range of turret <turretnum>
	<object> -> set command: <command> target=<target> target2=<target2> par1=<par1> par2=<par2>
	[skip|else] if [not]|while [not]|<retvar>= <ship> -> fire missile <missile> on <target>
	[skip|else] if [not]|while [not]|<retvar>= <ship> -> get current missile
	[skip|else] if [not]|while [not]|<retvar>= <ship> -> find best missile for target <target>
	<retvar>= best missile type for target <target>
	[skip|else] if [not]|while [not]|<retvar>= <ship> -> launch <dronecount> fight drones: protect me or attack target=<target>
	[skip|else] if [not]|while [not]|<retvar>= <ship> -> is missile <missile> ready to fire
	[skip|else] if [not]|while [not]|<retvar>= <ship> -> should a missile be fired
	<retvar>= <ship> -> get missile fire probability
	<ship> -> set missile fire probability to <probability>
	<retvar>= <ship> -> get missile fire time difference in seconds
	<ship> -> set missile fire time difference in seconds to <time>
	[skip|else] if [not]|while [not]|<retvar>= <ship> -> fits laser <laser> into turret <turret>
	[skip|else] if [not]|while [not]|<retvar>= <ship> -> get max number of lasers in turret <turret>
	<retvar>= <ship> -> get laser type in turret <turret> at slot <slot>
	<retvar>= <ship> -> get number of turrets
	<retvar>= get range of missile type <missile>
	<retvar>= <object> -> find nearest missile aiming at me
	[skip|else] if [not]|while [not]|<retvar>= <ship> -> decouple ships
	[skip|else] if [not]|while [not]|<retvar>= <ship> -> is decoupled ships leader
	[skip|else] if [not]|while [not]|<retvar>= <ship> -> get current galaxy flight timestep in ms
	[skip|else] if [not]|while [not]|<retvar>= <ship> -> is landing
	[skip|else] if [not]|while [not]|<retvar>= <ship> -> is starting
	[skip|else] if [not]|while [not]|<retvar>= <ship> -> use jumpdrive: target=<target>
	[skip|else] if [not]|while [not]|<retvar>= <ship> -> needed jumpdrive energy for jump to sector <sector>
	[skip|else] if [not]|while [not]|<retvar>= <ship> -> check, select and fire missile on <target>
	[skip|else] if [not]|while [not]|<retvar>= <object> -> add big ship <bigship>
	[skip|else] if [not]|while [not]|<retvar>= <object> -> has a free big ship dock slot
	[skip|else] if [not]|while [not]|<retvar>= <object> -> can be controlled by race logic
	<object> -> set race logic control enabled to [TRUE]|[FALSE]
	[skip|else] if [not]|while [not]|<retvar>= <object> -> can execute StartAction
	<object> -> set StartAction enabled to [TRUE]|[FALSE]
	<ship> -> set as player wingman: [TRUE]|[FALSE]
	[skip|else] if [not]|while [not]|<retvar>= <ship> -> is player wingman

	6.8 Trade Commands (for Ships)
	[skip|else] if [not]|while [not]|<retvar>= <ship> -> buy <count> units of <ware>
	[skip|else] if [not]|while [not]|<retvar>= <ship> -> buy <count> units of <ware> to a max price of <price> Cr
	[skip|else] if [not]|while [not]|<retvar>= <ship> -> sell <count> units of <ware>
	[skip|else] if [not]|while [not]|<retvar>= <ship> -> load <count> units of <ware>
	[skip|else] if [not]|while [not]|<retvar>= <ship> -> unload <count> units of <ware>
	<retvar>= <ship> -> get max. ware transport class
	[skip|else] if [not]|while [not]|<retvar>= <ship> -> get cargo bay size
	[skip|else] if [not]|while [not]|<retvar>= <ship> -> get free volume of cargo bay
	[skip|else] if [not]|while [not]|<retvar>= <ship> -> get volume of ware <ware> in cargo bay
	[skip|else] if [not]|while [not]|<retvar>= <ship> -> get true volume of ware <ware> in cargo bay
	[skip|else] if [not]|while [not]|<retvar>= <ship> -> get free volume of ware <ware> in cargo bay
	[skip|else] if [not]|while [not]|<retvar>= <ship> -> get total volume in cargo bay
	[skip|else] if [not]|while [not]|<retvar>= <ship> -> can transport ware <ware>
	<ship> -> add default items to ship
	<ship> -> switch laser in turret <turretid> gun <gunid> to <gun>
	<ship> -> set wanted ware count to <count>
	<ship> -> set wanted ware to <count>
	<retvar>= <ship> -> get wanted ware count
	<retvar>= <ship> -> get wanted ware
	[skip|else] if [not]|while [not]|<retvar>= <ship> -> has illegal ware onboard: race=<race>

	6.9 Trade Commands (for Stations)
	[skip|else] if [not]|while [not]|<retvar>= <station> -> get best store amount of ware <ware>
	[skip|else] if [not]|while [not]|<retvar>= <station> -> get max store amount of ware <ware>
	[skip|else] if [not]|while [not]|<retvar>= <station> -> can buy ware <ware>
	[skip|else] if [not]|while [not]|<retvar>= <station> -> can sell ware <ware>
	[skip|else] if [not]|while [not]|<retvar>= <station> -> get price of ware <ware>
	[skip|else] if [not]|while [not]|<retvar>= <station> -> get average price of ware <ware>
	<station> -> set price of ware <ware> to <price> Cr
	[skip|else] if [not]|while [not]|<retvar>= <station> -> uses ware <ware> as primary resource
	[skip|else] if [not]|while [not]|<retvar>= <station> -> uses ware <ware> as secondary resource
	[skip|else] if [not]|while [not]|<retvar>= <station> -> trades with ware <ware>
	[skip|else] if [not]|while [not]|<retvar>= <station> -> get product ware
	[skip|else] if [not]|while [not]|<retvar>= <station> -> get number of resources
	[skip|else] if [not]|while [not]|<retvar>= <station> -> get number of primary resources
	[skip|else] if [not]|while [not]|<retvar>= <station> -> get number of secondary resources
	[skip|else] if [not]|while [not]|<retvar>= <station> -> get max trade jumps
	[skip|else] if [not]|while [not]|<retvar>= <station> -> only player owned ships can trade with
	[skip|else] if [not]|while [not]|<retvar>= <station> -> get tradeable ware array from station

	6.10 Trade Commands (for Ships and Stations)
	[skip|else] if [not]|while [not]|<retvar>= <object> -> get money
	[skip|else] if [not]|while [not]|<retvar>= <object> -> add money: <amount>
	[skip|else] if [not]|while [not]|<retvar>= <object> -> get amount of ware <ware> in cargo bay
	[skip|else] if [not]|while [not]|<retvar>= <object> -> get true amount of ware <ware> in cargo bay
	[skip|else] if [not]|while [not]|<retvar>= <object> -> get free amount of ware <ware> in cargo bay
	[skip|else] if [not]|while [not]|<retvar>= <object> -> get max amount of ware <ware> that can be stored in cargo bay

	6.11 Trade Commands
	[skip|else] if [not]|while [not]|<retvar>= get player money
	add money to player: <amount>
	[skip|else] if [not]|while [not]|<retvar>= <object> -> add <amount> units of <ware>
	[skip|else] if [not]|while [not]|<retvar>= <object> -> install <amount> units of <ware>
	<retvar>= get volume of ware <ware>
	<retvar>= get transport class of ware <ware>
	[skip|else] if [not]|while [not]|<retvar>= find station: product <product> with best price: max.price=<price>, amount=<amount>, max.jumps=<jumps>, startsector=<sector>, trader=<trader>
	... find station: product <product> with min. jumps ...
	... find station: resource <product> with best price ...
	... find station: resource <product> with min. jumps ...
	... find station sells: resource <product> with best price ...
	... find station sells: resource <product> with min. Jumps ...
	<retvar>= get average price of ware <ware>
	<retvar>= get max. price of ware <ware>
	<retvar>= get min. price of ware <ware>
	<retvar>= get max. price of ware <ware> as secondary resource
	<retvar>= get min. price of ware <ware> as secondary resource
	[skip|else] if [not]|while [not]|<retvar>= is ware <ware> illegal in <race> sectors
	<retvar>= get maintype of ware <ware>
	<retvar>= get subtype of ware <ware>
	<retvar>= get ware from maintype <maintype> and subtype <subtype>
	<retvar>= get number of subtypes of maintype <maintype>
	<retvar>= <object> -> get maintype
	<retvar>= <object> -> get subtype
	[skip|else] if [not]|while [not]|<retvar>= <object> -> find station: product <product> with best price: max.price=<price>, amount=<amount>, max.jumps=<jumps>, startsector=<sector>, trader=<trader>

	6.12 General Object Commands
	[skip|else] if [not]|while [not]|<retvar>= <object> -> get object class
	[skip|else] if [not]|while [not]|<retvar>= <object> -> get owner race
	[skip|else] if [not]|while [not]|<retvar>= <object> -> get environment
	[skip|else] if [not]|while [not]|<retvar>= <object> -> get sector
	[skip|else] if [not]|while [not]|<retvar>= <ship> -> get homebase
	[skip|else] if [not]|while [not]|<retvar>= <object> -> is of class <class>
	[skip|else] if [not]|while [not]|<retvar>= <object> -> exists
	[skip|else] if [not]|while [not]|<retvar>= <object> -> get ware type code of object
	[skip|else] if [not]|while [not]|<retvar>= <station> -> get serial name of station
	<station> -> set serial name of station <serial>
	[skip|else] if [not]|while [not]|<retvar>= find station in galaxy: startsector=<sector> class or type=<type> race=<race> flags=<flags> refobj=<object> serial=<serial> maxjumps=<maxjumps>
	[skip|else] if [not]|while [not]|<retvar>= <object> -> is of type <type>
	[skip|else] if [not]|while [not]|<retvar>= get jumps from sector <startsector> to sector <endsector>
	[skip|else] if [not]|while [not]|<retvar>= get next sector on route from sector <currentsector> to <endsector>
	<ship> -> set homebase to <newhome>
	[skip|else] if [not]|while [not]|<retvar>= <object> get current shield strength
	[skip|else] if [not]|while [not]|<retvar>= <object> get maximum shield strength
	[skip|else] if [not]|while [not]|<retvar>= <ship> get current laser strength
	[skip|else] if [not]|while [not]|<retvar>= <ship> get maximum laser strength
	[skip|else] if [not]|while [not]|<retvar>= <ship> get max. laser strength in turret <turret>
	[skip|else] if [not]|while [not]|<retvar>= <object> get max. shield type that can be installed
	[skip|else] if [not]|while [not]|<retvar>= <object> get number of shield bays
	[skip|else] if [not]|while [not]|<retvar>= <ship> get number of laser bays
	[skip|else] if [not]|while [not]|<retvar>= <ship> get max. missile type that can be installed
	[skip|else] if [not]|while [not]|<retvar>= <object> get relation to object <subject>
	[skip|else] if [not]|while [not]|<retvar>= <object> get relation to race <race>
	[skip|else] if [not]|while [not]|<retvar>= <object> get notoriety to race <race>
	[skip|else] if [not]|while [not]|<retvar>= get notoriety from race <onerace> to race <anotherrace>
	[skip|else] if [not]|while [not]|<retvar>= <object> is <subject> a enemy
	[skip|else] if [not]|while [not]|<retvar>= <object> is <subject> a friend
	[skip|else] if [not]|while [not]|<retvar>= <object> is <subject> neutral to me
	[skip|else] if [not]|while [not]|<retvar>= <object> get shield type in bay <bay>
	[skip|else] if [not]|while [not]|<retvar>= <ship> get laser type in bay <bay>
	[skip|else] if [not]|while [not]|<retvar>= <object> has same environment as <subject>
	[skip|else] if [not]|while [not]|<retvar>= <object> is in same sector as <subject>
	[skip|else] if [not]|while [not]|<retvar>= <ship> is landed
	[skip|else] if [not]|while [not]|<retvar>= <ship> is docked
	[skip|else] if [not]|while [not]|<retvar>= <object> is docking possible of <ship>
	[skip|else] if [not]|while [not]|<retvar>= <ship> is docking allowed at <target>
	[skip|else] if [not]|while [not]|<retvar>= <object> is in a sector
	[skip|else] if [not]|while [not]|<retvar>= <object> get attacker
	<object> -> set attacker to <attacker>
	<retvar>= get distance between <oneobject> and <anotherobject>
	<retvar>= <object> -> get distance to: x=<x> y=<y> z=<z>
	<retvar>= <object> -> get distance to: position array=<position>
	<retvar>= <object> -> get distance: position array1=<position1> position array2=<position2>
	<retvar>= create ship: type=<type> owner=<owner> addto=<target> x=<x> y=<y> z=<z>
	<retvar>= <object> -> get x position
	<retvar>= <object> -> get y position
	<retvar>= <object> -> get z position
	<retvar>= <object> -> get position as array
	<retvar>= get player ship
	<object> -> set relation against <target> to <relation>
	<retvar>= create station: type=<type> owner=<owner> addto=<sector> x=<x> y=<y> z=<z>
	<retvar>= create gate: type=<type> addto=<sector> gateid=<id> dstsecx=<sectorx> dstsecy=<sectory> dstgateid=<linkto> x=<x> y=<y> z=<z>
	<retvar>= create asteroid: type=<type> addto=<sector> resource=<resource> yield=<yield> x=<x> y=<y> z=<z>
	<station> -> add product to factory or dock: <ware>
	<station> -> add primary resource factory or dock: <ware>
	<station> -> add secondary resource factory or dock: <ware>
	<station> -> remove product from factory or dock: <ware>
	<station> -> remove primary resource from factory or dock: <ware>
	<station> -> remove secondary resource from factory or dock: <ware>
	<retvar>= create nebula: type=<type> addto=<sector> x=<x> y=<y> z=<z>
	<retvar>= create sun: subtype=<subtype> r=<red> g=<green> b=<blue> addto=<sector> x=<x> y=<y> z=<z>
	<retvar>= create planet: subtype=<subtype> addto=<sector> x=<x> y=<y> z=<z>
	<retvar>= create special: type=<type> addto=<sector> x=<x> y=<y> z=<z>
	[skip|else] if [not]|while [not]|<retvar>= find ship: sector=<sector> class or type=<classtype> race=<race> flags=<flags> refobj=<refobj> maxdist=<maxdist> maxnum=<maxnum> refpos=<position>
	[skip|else] if [not]|while [not]|<retvar>= find asteroid: sector=<sector> resourcetype=<resource> min. yield=<yield> flags=<flags> refobj=<refobj> maxdist=<maxdist> maxnum=<maxnum> refpos=<position>
	[skip|else] if [not]|while [not]|<retvar>= find flying ware: sector=<sector> maintype=<maintype> subtype=<subtype> flags=<flags> refobj=<refobj> maxdist=<maxdist> maxnum=<maxnum> refpos=<position>
	[skip|else] if [not]|while [not]|<retvar>= find station: sector=<sector> class or type=<classtype> race=<race> flags=<flags> refobj=<refobj> maxdist=<maxdist> maxnum=<maxnum> refpos=<position>
	[skip|else] if [not]|while [not]|<retvar>= <object> -> is disabled
	<object> -> station trade and production tasks: on=[TRUE]|[FALSE]
	[skip|else] if [not]|while [not]|<retvar>= <object> -> get SectorObject ID
	[skip|else] if [not]|while [not]|<retvar>= <object> -> get ware type of SectorObject <sectorobject>
	[skip|else] if [not]|while [not]|<retvar>= <object> -> exists SectorObject <sectorobject>
	[skip|else] if [not]|while [not]|<retvar>= <object> -> get object from SectorObject <sectorobject>
	<object> -> destruct: show no explosion=[TRUE]|[FALSE]
	<object> -> set position: x=<x> y=<y> z=<z>
	<object> -> set rotation: alpha=<alpha> beta=<beta> gamma=<gamma>
	set position of sector object <sectorobject>: x=<x> y=<y> z=<z>
	set safe position of sector object <sectorobject>: x=<x> y=<y> z=<z>
	set rotation of sector object <sectorobject>: alpha=<alpha> beta=<beta> gamma=<gamma>
	<retvar>= create sector object: maintype=<maintype> subtype=<subtype>
	free sector object <sectorobject>
	kill sector object <victim>: reason <reason>, killer sector object <killer>
	start sector object <sectorobject> in space <sectorid>
	<retvar>= create flying ware: maintype=<maintype> subtype=<subtype> count=<count> sector=<sector> x=<x> y=<y> z=<z>
	<retvar>= <object> -> get rot alpha
	<retvar>= <object> -> get rot beta
	<retvar>= <object> -> get rot gamma
	<retvar>= <object> -> get size of object
	<retvar>= <object> -> get max upgrades for upgrade <ware>
	<retvar>= <object> -> get max speed
	<retvar>= <object> -> get max hull
	<retvar>= <object> -> get hull
	<retvar>= <object> -> get hull percent
	<retvar>= <object> -> get shield percent
	<retvar>= <object> -> get shield and hull percent
	<retvar>= <ship> -> get max upgraded speed
	<retvar>= <object> -> get dock bay size
	<retvar>= <object> -> get number of landed ships
	player loses police license for race <race>
	<race> -> add notoriety: race=<subject> value=<value>
	<object> -> set ship disabled to [TRUE]|[FALSE]
	<object> -> put into environment <environment>
	<station> -> station send defend squad against ship <target>
	<retvar>= <object> -> get name
	<retvar>= <object> -> set name to <name>
	<retvar>= <object> -> set owner race to <race>
	[skip|else] if [not]|while [not]|<retvar>= <object> -> find ship: sector=<sector> class or type=<classtype> race=<race> flags=<flags> refobj=<refobj> maxdist=<maxdist> maxnum=<maxnum> with homebase=<homebase>
	[skip|else] if [not]|while [not]|<retvar>= find station in galaxy: startsector=<sector> class or type=<type> race=<race> flags=<flags> refobj=<object> serial=<serial> maxjumps=<maxjumps> num=<count>
	<retvar>= <object> -> get id code
	<retvar>= <ship> -> get pilot name
	<retvar>= <ship> -> set pilot name to <name>
	<ship> -> set pilot speaker: voice=<voice>, face=<face>, Pirate subrace=[TRUE]|[FALSE], Argon female=[TRUE]|[FALSE]

	6.13 Universe and Sector Commands
	[skip|else] if [not]|while [not]|<retvar>= get sector from universe index: x=<x>, y=<y>
	<retvar>= get max sectors in x direction
	<retvar>= get max sectors in y direction
	[skip|else] if [not]|while [not]|<retvar>= <sector> -> is sector known by the player
	<retvar>= <sector> -> get universe x index
	<retvar>= <sector> -> get universe y index
	<retvar>= <sector> -> get warp gate: gate id=<gate>
	<retvar>= <sector> -> get north warp gate
	<retvar>= <sector> -> get south warp gate
	<retvar>= <sector> -> get east warp gate
	<retvar>= <sector> -> get west warp gate
	<retvar>= find random sector: startsector=<sector>, jumps=<maxjumps>, owner=<owner>
	<retvar>= <object> -> get ship array from sector/ship/station
	<retvar>= <sector> -> get station array from sector
	<retvar>= <sector> -> get factory array from sector
	<retvar>= <sector> -> get dock array from sector
	<retvar>= <sector> -> get player owned ship array from sector
	<retvar>= <sector> -> get player owned station array from sector
	<retvar>= <sector> -> get asteroid array from sector

	7.Advanced Topics
	7.1 Processes and Tasks
	Table 7.1 - Task roles for ships and stations
	Illustration 7.1 COMMAND_ACTION displayed on "Additional Ship Commands" menu

	7.2 Concurrency, Interrupts, and Atomic Operations
	Concurrency
	Interrupts
	Signals
	Table 7.2 – Signals and their handler scripts

	Atomic Operations

	7.3 Artificial Life (AL) Engine Plugins
	Registration Script
	Event Handler Script
	Table 7.3 - AL Engine Event Types

	Timer Handler Script

	7.4 Automatic Command Restarting
	Detecting Script Changes
	Performing the Restart

	Annex A. Data Charts
	A.1 Plot states
	Table 8.1Plot states for the is plot instruction

	A.2 Audio Samples Catalogue
	Table 8.2 - Audio Samples

	A.3 Speech Samples Catalogue
	Page 7 – Sector names
	Table 8.3 - Speech Samples, Page 7 - Sector Names

	Pages 9 & 12 – Latin and Greek Letters
	Table 8.4 - Speech Samples, pages 9 and 12 - Latin and Greek Alphabets

	Page 13 – Miscellaneous Phrases
	Table 8.5- Speech Samples, page 13 - Miscellaneous Phrases

	Page 17 – Object, Ship, and Factory Names and Descriptions
	Stations
	Table 8.6 - Speech Samples, page 17 - Station Names

	Wares & Upgrades
	Table 8.7 - Speech Samples, Page 17 – Wares & Upgrades

	Ships
	Table 8.8 - Speech Samples, Page 17 - Ship Types

	A.4 Default Start Actions
	Table 8.9 - Default start actions

	A.5 Object Hierarchy
	A.6 Search Flags
	Table 8.10 - Search Flags

	A.7 Asteroid Types
	Table 8.11 - Asteroid Types

	A.8 Nebula Types
	Table 8.12 - Nebula Types

	A.9 Sun Subtypes
	Table 8.13 - Sun Subtypes

	A.10 Planet Subtypes
	Table 8.14 - Planet Subtypes

	A.11 "Special" Object types
	Special Object Descriptions
	Table 8.15 - Description of Special Object Types

	Special Object Images
	Table 8.16 - Special Object Type Images

	Index

